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Wave packet revivals and fractional revivals are studied by means of a measure of nonclassicality based
on the Fisher information. In particular, we show that the spreading and the regeneration of initially
Gaussian wave packets in a quantum bouncer and in the infinite square-well correspond, respectively,
to high and low nonclassicality values. This result is in accordance with the physical expectations that
at a quantum revival wave packets almost recover their initial shape and the classical motion revives
temporarily afterward.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Quantum systems may behave classically or quasiclassically un-
der a variety of circumstances and, in this regard, the transition
from quantum to classical mechanics still poses intriguing prob-
lems that attract considerable attention. Of particular interest are
systems that display both classical and quantum periodic motions,
with generally different, incommensurable periods, for in this case
the interesting question arises as to how the classical periodicity
emerges from the quantum one in the appropriate limit. For in-
stance, a particle of mass m and energy E in an infinite square-well
potential of width L initially oscillates with a classical period Tcl =
L
√

2m/E . The classical oscillations gradually damp out as the wave
packet representing the particle spreads more or less uniformly
across the well. Quantum mechanically, the wave function regains
exactly its initial form with a revival period Trev = 4mL2/π h̄, after
which the classical oscillations resume with period Tcl again. At
times that are rational fractions of Trev, the wave packet temporar-
ily splits into a number of scaled copies called fractional revivals
[1–3]. In the same vein, an object of mass m released from a
height z0 and subjected only to gravity, bounces up and down
against an impenetrable flat surface with a classical period (in
suitable units) Tcl = 2

√
z0, while the wave function of the corre-

sponding quantum bouncer almost returns to its initial shape after
a revival time Trev = 4z2

0/π . After a revival has taken place, a new
cycle of quasiclassical behavior and revivals commences again. The
fact that in this case the revivals are only approximate does not
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make a difference. Revivals and fractional revivals received a great
deal of attention over the last decades. Theoretical progress and
experimental observations were made in atoms and molecules, and
Bose–Einstein condensates [4–7]. Recently, revivals have been the-
oretically investigated in low dimensional systems [8–13] and have
been related to quantum phase transitions [14].

Identifying the occurrence of wave packet revivals usually
makes use of the autocorrelation function A(t) = 〈Ψ (0)|Ψ (t)〉,
which is the overlap between the initial and the time-evolving
wave packet. Within this approach, the occurrence of revivals and
fractional revivals corresponds to, respectively, the return of A(t)
to its initial value of unity and the appearance of relative maxima
in A(t). Another method to study revival phenomena consists in
monitoring the time evolution of the expectation values of some
quantities [3,15,16], and an approach based on a finite difference
eigenvalue method has been put forward that allows to predict
the revival times directly [17]. Recently, information entropy ap-
proaches were proposed [18] based on the Shannon and Rényi
entropies, complementary to the conventional ones. This technique
was shown to be superior to analyses based on both the standard
variance uncertainty product [19] and the autocorrelation function,
inasmuch as it overcomes the difficulty that wave packets reform
themselves at locations that do not coincide with their original
ones. A complementary informational measure is the Fisher in-
formation [20] which has attracted substantial interest in physics,
in particular in atomic and molecular physics (see for example
[21–35]). In this Letter we show that the analysis of the wave
packet dynamics can be carried out using a new tool, namely, the
nonclassicality Jnc, defined in terms of the Fisher information as
we now discuss.

Hall [36] has recently introduced a measure of nonclassicality,
Jnc, in terms of the probability densities in position and momen-
tum spaces, ρ(x) = |ψ(x)|2 and γ (p) = |φ(p)|2, respectively. To be
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concrete, Jnc ≡ (h̄/2)
√

Iρ Iγ , where

Iρ = 4
∫ ∣∣∣∣ d

dx
ρ1/2(x)

∣∣∣∣
2

dx, Iγ = 4
∫ ∣∣∣∣ d

dp
γ 1/2(p)

∣∣∣∣
2

dp. (1)

Note that Iρ and Iγ are the classical Fisher informations asso-
ciated with the probability densities ρ(x) and γ (p) [20]. In the
next section we shall show that the time evolution of a wave
packet exhibiting revivals and fractional revivals is initially charac-
terized by a classical behavior with a low Jnc value, followed by a
wave packet spreading with a higher value of Jnc. In the long-time
evolution, for times near Trev, the wave packet (approximately)
restores its initial form, exhibiting classical periodicity again ac-
companied by a decrease in Jnc. In the case of fractional revivals
at t = pTrev/q, several mini-packets emerge whereupon a decrease
in Jnc is expected.

This Letter is organized as follows. In Section 2 we shall con-
sider the Fisher information as it applies to revival phenomena. In
particular, we show the role of the Fisher information as a mea-
sure of nonclassicality in the dynamics of two model systems that
exhibit fractional revivals: the so-called quantum ‘bouncer’, that
is a quantum particle bouncing against a hard surface under the
influence of gravity and the infinite square-well. Finally, some con-
cluding remarks will be given in the last section.

2. Fisher information and nonclassicality

The Fisher information of single particle systems is defined as
a functional of the density function in conjugate spaces by Eq. (1)
and it has been shown to be a measure of nonclassicality [36]. Fol-
lowing Hall [36] and Mosna et al. [37], the Fisher information in
position space can be expressed as Iρ = (4/h̄)2(〈P 2〉ψ − 〈P 2

cl〉ψ)

where P denotes the momentum operator and Pcl is a (state-
dependent) classical momentum operator defined by

PclΨ (x) = h̄

2i

(
ψ ′(x)

ψ(x)
− ψ∗′(x)

ψ∗(x)

)
= h̄

(
argψ(x)

)′
. (2)

Hence, it is natural to separate the momentum operator in a clas-
sical (Pcl) and nonclassical (Pnc) contribution with Pnc ≡ P − Pcl.
The definition of the classical momentum observable is supported
by the facts that ρ satisfies the classical continuity equation
and that the expectation values of P and Pcl are equal for all
wave functions 〈P 〉ψ = 〈Pcl〉ψ [36]. The conjugate equality that
relates the momentum Fisher information and the nonclassical-
ity of the position operator can be obtained analogously, Iγ =
(4/h̄)2(〈X2〉φ − 〈X2

cl〉φ). Finally, Hall introduced a measure of joint
nonclassicality Jnc for a quantum state as

Jnc ≡ h̄

2
I1/2
ρ I1/2

γ . (3)

It follows that Jnc = 1 for Gaussian distributions. For instance, the
evolution of Gaussian wave packets in a harmonic oscillator follows
a periodic motion in accordance with classical expectations [3],
and Jnc = 1 for all times. For mixed states, Jnc can be arbitrarily
small while for pure states Hall found Jnc � |1 + (i/h̄)〈[Pcl, Xcl]〉ψ |
[36].

2.1. Quantum bouncer

Consider an object of mass m bouncing against a hard sur-
face subjected only to the influence of the gravitational force di-
rected downward along the z axis, that is, a particle in a po-
tential V (z) = mgz, if z > 0 and V (z) = +∞ otherwise. Gravita-
tional quantum bouncers have been recently realized using neu-
trons [38] and atomic clouds [39]. Their revival behavior has been

discussed in [16,40] and an entropy-based approach was presented
in [18,19].

The time-dependent wave function for a localized quantum
wave packet is expanded as a one-dimensional superposition of
energy eigenstates as

ψ(x, t) =
∑

n

anun(x)e−iEnt/h̄. (4)

The eigenfunctions and eigenvalues are given by [40]

E ′
n = zn; un

(
z′) = Nn Ai

(
z′ − zn

); n = 1,2,3, . . . (5)

where lg = (h̄/2gm2)1/3 is a characteristic gravitational length, z′ =
z/lg , E ′ = E/mglg , Ai(z) is the Airy function, −zn denotes its zeros,
and Nn = |Ai′(−zn)| is the un(z′) normalization factor. Accurate
analytic approximations for zn exist [40],

zn 	 3π

2

[
n − 1

4

]2/3

. (6)

Consider now an initial Gaussian wave packet localized at a
height z0 above the surface, with a width σ and a momentum p0
(in the remainder of this Letter the primes on the energy and po-
sition symbols will be dropped)

ψ(z,0) = 1√
σ h̄

√
π

e−(z−z0)2/2σ 2h̄2
eip0(z−z0)/h̄. (7)

If the lower bound of the integral is extended to −∞, the associ-
ated coefficients of the time-dependent wave function for p0 = 0
can be obtained analytically as [40]

Cn 	 Nn

(
2

πσ 2

)1/4 ∞∫
−∞

Ai(z − zn)e−(z−z0)2/σ 2
dz

= Nn

(
2

πσ 2

)1/4√
πσ exp

[
σ 2

4

(
z0 − zn + σ 4

24

)]

× Ai

(
z0 − zn + σ 4

16

)
. (8)

The important time scales of a wave packet’s time evolution
are in the coefficients of the Taylor series (see, for instance [1–3])
of the energy spectrum En around the level the wave packet is
centered around, let us say n̄:

En̄ = En + 2π h̄

(
(n − n̄)

Tcl
+ (n − n̄)2

Trev
+ · · ·

)
. (9)

The classical period and the revival time can be calculated to ob-
tain Tcl = 2

√
z0 and Trev = 4z2

0/π , respectively [40]. The temporal
evolution of the wave packet in momentum space was obtained
numerically by the fast Fourier transform method.

We have computed the temporal evolution of the autocorrela-
tion function and the nonclassicality Jnc for the initial conditions
z0 = 100, σ = 1 and p0 = 0. Fig. 1 displays the early time evo-
lution of both quantities and the location of the main fractional
revivals. The top panel shows how the autocorrelation function
initially follows the first classical periods of motion. The nonclas-
sicality, Jnc, describes precisely this same behavior, with peaks at
the wave packet’s collapses and minima at the multiples of the
classical period. In the long-time limit, the wave packet eventually
spreads out and collapses, only to reform at multiples of the revival
time. In between, fractional revivals take place. All this is reflected
in the maxima and relative maxima of |A(t)|2 as shown in the top
panel of Fig. 2. The alternative description in terms of Jnc is shown
in the bottom panel of Fig. 2. The slightly nonclassical behavior or,
equivalently, the quasiclassical behavior that takes place at full and
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