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Employing linearized Vlasov–Maxwell system of equations, the whistler instability is discussed for a
semi-relativistic bi-Maxwellian distribution. The dispersion relations are analyzed analytically along with
the graphical representation and the estimates of the growth rate and instability threshold condition
are also presented in the limiting cases i.e., ξ± = (ω ∓ Ω)/k‖vt‖ � 1 (resonant case) and ξ± � 1 (non-
resonant case). Further for field free case i.e., B0 = 0, the growth rates for Weibel instability in a
semi-relativistic bi-Maxwellian plasma are presented for both the limiting cases.
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1. Introduction

The presence of relativistic electrons in the magnetosphere
induces various types of electromagnetic instabilities due to
anisotropy of temperature. This instability arises in a variety of
plasmas including fusion plasmas, both magnetic and inertial con-
finement, as well as in space and astrophysical plasmas. The
classical Weibel instability [1] is such an example of an unmag-
netized plasma which in the presence of magnetic field generates
either whistler or cyclotron maser instability. The Weibel instabil-
ity, which has been around for several decades is of significant
interest since it generates quasi-stationary magnetic fields that can
account for seed magnetic fields in laboratory and astrophysical
plasmas.

The Weibel instability plays an important role in explaining the
generation of cosmic magnetic fields in gamma-ray burst sources
and relativistic jet sources, supernovae, and galactic cosmic rays
[2–4] as well as the origin of cosmological seed magnetic fields in
regions of intense gaseous streaming or temperature anisotropies
[5,6]. By using different distributions, the analysis of relativistic
Weibel instability has been discussed in detail by several au-
thors [7–13]. A comparative study of Weibel and filamentation
instabilities and their cumulative effects has been presented for
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non-relativistic and weakly relativistic bulk velocities by Bret et al.
[14], Lazar et al. [15] and Stockem et al. [16] respectively. Lately,
the Weibel instability in quantum plasma has also been studied
in linear regime by Haas [17] and in non-linear regime by Haas
et al. [18].

Whistler mode emissions were detected inside and outside the
Saturn’s magnetosphere by plasma wave instruments on Voyager 2
[19,20]. Whistlers are naturally produced in thunderstorms, light-
ning discharges and also near the north pole which can travel to
the south pole along the Earth’s magnetic lines of force through
the Ionosphere and then return back to the origin. In magneto-
spheres whistlers are also observed to propagate through self cre-
ated ducts [21]. In laboratory plasma, whistler mode is used for rf
plasma discharge, heating of plasmas in tokamaks [22] and sphero-
maks [23]. Whistler instability in relativistic regime is a powerful
mechanism for producing non-thermal, stimulated radiations (i.e.,
radio emissions) [24]. The necessary condition for this instability
is that the positive gradient along perpendicular velocity should
be present in velocity distribution function and such may occur in
Solar corona [25], quasi perpendicular shocks [25] and the mag-
netosheath [26]. The most intense radiations originate from the
strongly magnetized auroral regions of the magnetospheres, where
the local electron plasma frequency is much less than cyclotron
frequency. Such regions are also associated with other planetary
magnetospheres and auroras [27,28]. Califano et al. [29] presented
the fully relativistic fluid simulation to study the propagation of a
relativistic beam in a dense plasma showing that the Weibel in-
stability generates bubble like magnetic structures. The linear and
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non-linear evolution of the electromagnetic beam–plasma instabil-
ity, in connection to the numerical and experimental results of the
laser–plasma interaction, has been discussed in detail by Califano
et al. [30] for the non-relativistic and relativistic collisionless inho-
mogeneous plasma regimes.

Yang et al. [31] calculated the Weibel instability in a relativis-
tic hot magnetized electron–positron plasma and showed that both
the decrease in temperature anisotropy and increase in background
magnetic field can cause a significant decrease in the growth rate.
Shah and Jain [32] studied the excitation of the whistler waves
propagating obliquely to the constant magnetic field in a warm
and inhomogeneous plasma in the presence of an inhomogeneous
beam of suprathermal electrons. The full dispersion relation in-
cluding electromagnetic effects is derived. In the electrostatic limit
the expression for the growth rate is given. It is found that the
inhomogeneities in both beam and plasma number densities ef-
fect the growth rates of the instabilities. Recently, Lazar et al. [45]
discussed the Weibel instability in a magnetized non-relativistic
bi-Maxwellian plasma and investigated the threshold conditions
for the instability to set in. Mace and Sydora [33] investigated the
parallel-propagating whistler instability in a magnetized electron–
ion plasma having bi-kappa velocity distributions for a wide range
of parameters. Liu et al. [34] and Gary et al. [35] presented lin-
ear kinetic dispersion analysis and performed a two-dimensional
electromagnetic particle-in-cell simulation to demonstrate a pos-
sible excitation mechanism of whistler waves. Schlickeiser et al.
[36] discussed the whistler Weibel-like modes in an anisotropic
bi-Maxwellian magnetized electron–proton plasma. Palodhi et al.
[37] presented a fully non-linear investigation of whistler instabil-
ity for the non-relativistic case and discussed in detail the transi-
tion between the non-resonant Weibel instability and the resonant
whistler instability and the formation of non-linear structures.

Recently Zaheer and Murtaza discussed the Weibel instability
for the non-Maxwellian distribution functions [38] and for the
semi-relativistic Maxwellian distribution function [39] in an un-
magnetized plasma. That work was later extended to a magne-
tized non-relativistic non-Maxwellian plasma [40]. Subsequently
Bashir and Murtaza [41], in their review study of plasma waves
and instabilities, described the effect of temperature anisotropy
on resonant and non-resonant whistler and Weibel instabilities for
non-relativistic plasma. In the present Letter, we are investigating
the whistler instability in the magnetized anisotropic plasma in the
semi-relativistic Maxwellian regimes.

The layout of this Letter is as follows: In Section 2, we use
the kinetic theory to calculate the general dispersion relation for
a magnetized plasma in both the non-relativistic and the semi-
relativistic regimes using anisotropic Maxwellian distributions. We
also derive the analytical expressions for the real and the imag-
inary parts of the dielectric constant for both the momentum
distributions in the limiting cases ξ± � 1 and ξ± � 1. A brief sum-
mary of results and discussion is given in Section 3 along with the
graphical representation of the whistler instability in a magnetized
semi-relativistic bi-Maxwellian plasma for both the limiting cases.

2. Mathematical model

The linear dispersion relation for the transverse electromagnetic
electron waves propagating parallel (i.e., k(0,0,kz)) to the ambient
magnetic field B0, is given by [11,42]
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where Ω = Ω0/γ is the relativistic cyclotron frequency with Ω0 =
eB0/moc and γ 2 = 1 + p2⊥/m2c2 + p2⊥/m2c2 and B0 is along the
z-direction. In Eq. (1), the upper and lower signs in the denomina-
tor of the integrand correspond to the right-hand and the left-hand
circular polarizations, respectively.

In the following, we shall derive the general linear disper-
sion relations for the non-relativistic and the semi-relativistic
Maxwellian momentum distributions [39] i.e.,
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Yoon [9] has studied the Weibel instability with the fully rela-
tivistic anisotropic distribution function which in the limit of non-
relativistic parallel momentum (i.e., p2‖ � m2c2 and p2‖ � p2⊥) gives
semi-relativistic distribution function chosen above. We there-
fore assume that for both the non-relativistic and semi-relativistic
cases, the parallel momentum distributions are same having the
non-relativistic Maxwellian distribution and the relativistic mass
factor only depends upon the perpendicular momentum i.e., γ ≈

γ⊥ = (1 + p2⊥/m2c2)
1
2 . For p2⊥ � m2c2 and T⊥ � mc2, the semi-

relativistic distribution immediately reduces to the non-relativistic
bi-Maxwellian distribution.

Thus performing straight forward p‖-integrations with f0‖ =
1√

2πmT‖
exp[− p2‖

2mT‖ ], Eq. (1) takes the form

0 = −ω2 + c2k2‖ − 2π
ω2

pe

m2 v2
t⊥

∞∫
0

dp⊥ p3⊥ f N,s
0⊥

γ 2⊥

×
{

ω

k‖vt‖
Z(ξ±) − 1

2

(
T⊥
T‖

− 1

)
Z ′(ξ±)

}
(4)
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are the perpendicular distribution functions for the non-relativistic
and the semi-relativistic cases respectively and Z(ξ±) is the plasma
dispersion function [43] defined as
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Z ′(ξ±) indicates the derivative of plasma dispersion function with
respect to its argument ξ± .

By using the expansion of the plasma dispersion function for
the limiting case ξ± � 1

Z(ξ±) � i
√

π − 2ξ± + 4

3
ξ3± − · · ·

we may write the dispersion relation for R-wave in Eq. (2) as
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