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The influence of the static magnetic field on the edge states of finite zig-zag nanotubes has been explored
theoretically by the tight-binding approximation. It was found that the magnetic field removes the
degeneracy of the energy levels of the edge states. Investigation of the formation of new edge states by
the magnetic field indicated the dependence of the number of these states on the length of a nanotube.
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1. Introduction

Carbon nanotubes are extensively studied experimentally and
theoretically because of their unusual electronic properties. A car-
bon nanotube can be viewed as a graphene sheet rolled into a
cylindrical shape so that the structure is one-dimensional with ax-
ial symmetry and in general exhibits a spiral conformation called
chirality. Nanotubes show unique mechanical and electronic prop-
erties [1]. Properties of the finite-length nanotubes are strongly
influenced by the types of edges. From the category of edges the
most intensively studied are the zig-zag and armchair types. For
the nanographite ribbons with the zig-zag edge the presence of
localized states near the Fermi level was already shown. However,
similar states were absent in ribbons with armchair edges [2].

The graphite sheet is considered as a zero-gap semiconductor
with the density of states (DOS) vanishing at the Fermi level. In
contrast, the edge states of the zig-zag ribbons produce a peak
in the DOS at the Fermi level. The finite nanotubes with the
edges bring about the change of the dimensionality of the sys-
tem from one to zero dimensional system, as it is in the case of
fullerenes [3]. The existence of edge states for arbitrarily oriented
graphene ribbons with a large class of edge shapes was already in-
vestigated [4]. From these studies new geometrical understanding
of the edge state has emerged. The relation of the edge states to
the topological nature of nanotubes was also found [5]. In addition,
the presence of the edge state results in the relatively important
contribution to the density of states (DOS) near the Fermi en-
ergy |6]. Apparently, the length of single-wall carbon nanotubes [7]
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affects the edge states. In short nanotubes the edge states could
play an important role by contribution to conductivity. Specifi-
cally, it was found [8] that the HOMO-LUMO (highest occupied
molecular orbital and lowest unoccupied molecular orbital,respec-
tively) gap is inversely proportional to the length of the zig-zag
carbon nanotube segment. Another factor showing the potential-
ity of controlling the electronic properties of a carbon nanotube is
an external magnetic field [9]. To explore this possibility, we have
also conducted in this Letter a theoretically study of the electronic
properties of finite-length carbon nanotubes under the influence of
the magnetic field.

2. Theory

_ We investigate the zigzag nanotubes in the static magnetic field
B parallel to the nanotube axis. We assume Hamiltonian for an
electron in a potential V(r) and in the magnetic field in the form
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The potential V (r) reflects the structure of the crystal lattice such
as the symmetry and periodicity properties. Here this potential de-
scribes the structure of the zig-zag single wall carbon nanotube.
The vector potential A in the Landau gauge can be expressed in
the form [1]
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where @ = Brr? is the magnetic flux penetrating the cross sec-
tion of the carbon nanotube, and L = 27r is a circumference of
the nanotube (r-nanotube radius). Here the coordinate x is in the
circumferential direction, and the coordinate y denotes the di-
rection parallel to the nanotube axis. To describe the parameters
which characterize the zig-zag tubules, we start from the graphene
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Fig. 1. Structure of the finite-length open ended single wall carbon nanotube with
the zig-zag edges. A unit cell for the width M =4 which creates a nanotube is
depicted.

layer [10] where we can define the vectors connecting the nearest
neighbor carbon atoms for the zig-zag nanotubes in the form:
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where a =0.246 nm is the lattice constant. The finite length open
ended zig-zag carbon nanotubes can be assumed to be rolled from
the finite length zig-zag graphene nanoribbons [2]. In confining the
structure along the length, the edge states are induced by termi-
nating the length dimension with the zig-zag shaped edges. We
will study the edge and size effects using the tight-binding model
for the carbon nanotube shown in Fig. 1. We want to find the so-
lution to the above problem in the form of the Bloch function

M
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where
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where o denotes A or B atoms. Here _d)a are the coordinates of the
« atom in the unit cell and 7, is a position of a unit cell, M is the
number of the unit cell; |@(F)) is a 7 orbital which is generally
different for the outer and inner shell; G(k) is the phase factor
associated with the magnetic field and is expressed by [11]
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Employing Eq. (2) we get
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Now we define the hopping integrals
(07 — AD|H|p( — B)) = yoB,
(0@ — Ap)|H|pG - Bit1) = 0. 9

The electronic spectrum of finite zig-zag single wall carbon
nanotubes can be described by the following system of equations:

€Capn +HapBy.1CByyy + HApByCy = ECap,s (10)
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where

HapBypst = Y0, (12)
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here @g=h/e,n=0,...,N—1, B=1— 1(%)? for the (N,0) zig-
zag nanotube [12] and yp (= 3 eV) is the nearest neighbor hopping
integral in the flat graphene. The site index m =1, ..., M, where
M describes the length of the nanotube. So we have

ECa, + ¥0CB,,,1 + 108nCs, =0, (14)
ECg,, + y0Ca,,_, + Y08nCa, =0, (15)
where E =€ — E and
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where By = 4h/ea2. We assume that the Ap and Bjs41 sites are
missing. So we have the boundary condition C4, =Cg,,,, =0 [13].
The solutions of Eqs. (14) and (15) in two cases (cases I and II) are
found. The solution is assumed to be (case I)

Ca, = AeP™ 4 Be~Pm, (7)
B, = el + e~ipm,
Cp,, = CeP™ 4 De~Pm (18)

Here A, B, C and D are the coefficients which have to be deter-
mined and p is the wave number in the direction of the nanotube
axis. From the boundary condition we have

Cap=A+B=0, (19)
Coyyy = CelP(M+1) | pe—ip(M+1) _ g (20)
And so

Ca, = A(eipm - e’ipm), (21)
Cp,, = C(eP™ — Z2e~Pm) (22)

where z = ePM+D_ Sybstituting Egs. (21) and (22) into Egs. (14)
and (15) we obtain
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