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a b s t r a c t

Computational methods were used to reduce the dimensionality and to find clusters of multivariate

data. The variables were the natural radioactivity contents and the texture characteristics of sand

samples. The application of discriminate analysis revealed that samples with high negative values of the

former score have the highest contamination with black sand. Principal component analysis (PCA)

revealed that radioactivity concentrations alone are sufficient for the classification. Rough set analysis

(RSA) showed that the concentration of 238U, 226Ra or 232Th, combined with the concentration of 40K,

can specify the clusters and characteristics of the sand. Both PCA and RSA show that 238U, 226Ra and
232Th behave similarly. RSA revealed that one or two of them can be omitted without degrading

predictions.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Many applications require projection of multidimensional data
onto some lower-dimensional space. The goal of the dimension
reduction is to identify the features in a multidimensional space
that contribute to the classification of interest significantly and to
retain most of the information of the original data. This is crucial
when the original dimensionality is too high to be manageable.
Multivariate statistical techniques have been used in many areas.
In this work, we investigated the application of some of these
techniques to the radioactivity contents and texture character-
istics of sand samples. Dimension reduction was used to extract
adequate information for detecting similarities, differences, and
relationships among these samples.

1.1. Principal component analysis

Principal component analysis (PCA) can be used to explore data
in an effort to reduce their dimension (Mardia et al., 1979;
Chatfield and Collins, 1980; Krzanowski, 2000). In this technique,

correlations between variables are summarized in terms of a
small number of underlying factors. The method allows expres-
sing most of the variance within a data set by means of a smaller
number of factors, or principal components (PCs). Each PC is a
linear combination of the parameters of the original data,
whereby each successive PC explains the maximum amount of
variance possible not accounted for by the previous PCs. Each PC is
orthogonal to and, therefore, uncorrelated with the other PCs.

Two matrices, known as scores and loadings, give a concise and
simplified description of the variance in the data set. The PC
loadings define the way in which the old variables are linearly
combined to form the new variables. The loadings define the
orientation of the computed PC plane with respect to the original
variables and indicate which variables carry the greatest weight in
transforming the position of the original samples from the data
matrix into their new position in the score matrix. Scores are
coordinates of the samples in the established model, and they can
be regarded as new variables.

The adjustment is made, first, by subtracting the mean of the
variables from the value of each variable. This adjustment is made
because PCA deals with the co-variances among the original
variables; so, the means are irrelevant. PCs are constructed as
weighted averages of the original variables. Their values for a
specific row are referred to as factor scores, component scores, or

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/apradiso

Applied Radiation and Isotopes

0969-8043/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.apradiso.2009.04.001

� Corresponding author. Tel.: +20 40 344 352; fax: +20 40 350 804.

E-mail address: Hussein_badran@hotmail.com (H.M. Badran).

Applied Radiation and Isotopes 67 (2009) 1721–1728

www.sciencedirect.com/science/journal/ari
www.elsevier.com/locate/apradiso
dx.doi.org/10.1016/j.apradiso.2009.04.001
mailto:Hussein_badran@hotmail.com


simply scores. The basic equation of PCA in the matrix notation is
given by

Y ¼WX,

where X is the data matrix, Y is the matrix of scores, and W is a
matrix of coefficients. Matrix W is calculated as

W ¼ UL�1=2,

where U is in the matrix of the eigenvectors and L is the diagonal
of the eigenvalues of the variance-covariance matrix (S). The
eigenvectors are the weights that relate the scaled original
variables ðxi ¼ ½Xi �mean�=sÞ to the factors.

The eigenvectors and the factor loadings are then calculated.
The former relate the scaled original variables to the factors, while
the latter represent the correlations between the variables and
factors. The score coefficients are then used to form the factor
scores. The factor scores are the values of the factors for a
particular row of data. These score coefficients are similar to the
eigenvectors, but they are scaled so that the produced scores have
a variance of unity rather than a variance equal to the eigenvalue.
This makes the variances of the factors identical.

Outliers are observations that are very different from the bulk
of the data. To identify them, two quantities, T2 and Qk, are
calculated for k ¼ 0, 1,2,y,8. Qk and T2 measures the combined
variability of all the variables in a single observation. It provides a
scaled distance measure of an individual observation from the
overall mean and is defined as

T2
¼ ½x̄� x̄ �0S�1

½x̄� x̄�,

where x̄ represents a p-variable observation vector, x̄ stands for
the p-variable mean vector, and S�1 is the inverse of the
covariance matrix. Qk represents the sum of squared residuals
when an observation is predicted with the first k factors.

Outliers can strongly influence the statistical analysis and
compromise results (see, e.g., Baenett and Lewis, 1994). Most
standard multivariate analysis techniques rely on the assumption
of normality and require estimates of both the location and scale
parameters of the distribution. Outliers may distort the values of
these estimators arbitrarily and render the results of the
application of these techniques meaningless. It is well known
that the classical rule for PCA is very sensitive to outliers because
the sample covariance matrix is sensitive to them (Huber, 1981).
In the multivariate case, a classical way to identify outliers is to
calculate Mahalanobis’ distance using robust estimators of the
covariance matrix and the mean vector (see Visuri et al., 2000, for
references of numerous proposed robust techniques). No evidence
was found of severe outliers in the present data; so, the non-
robust estimation is adequate.

1.2. Discriminate analysis

Discriminate analysis (DA) can discriminate between different
populations. Thus, it can simplify a description of observations by
finding the patterns in perplexing data and be used to determine
which variables are the best predictors. In the two-group case, DA
can also be thought of as (and is analogous to) multiple regression.
In general, in the two-group case (groups labeled ‘1’ and ‘2’), it is
possible to fit a linear equation of the type

group ¼ aþ b1x1 þ b2x2 þ b3x3 þ � � � � � � þ bmxm,

where a is a constant and b1, b2,ybm are regression coefficients.
The interpretation of the results of a two-group problem is
straightforward and follows the logic of multiple regression
closely: Those variables with the largest (standardized) regression
coefficients are the ones that contribute most to the prediction of
group membership.

When there are more than two groups, we can estimate more
than one discriminate function like in the equation presented
above. For example, with three groups, we can estimate: (i) a
function for discriminating between Group 1 and Groups 2 and 3
combined and (ii) another function for discriminating between
Groups 2 and 3. Coefficients bi in these discriminate functions
could then be interpreted as described above.

When performing a multiple group discriminate analysis, we
do not have to specify how to combine groups to form various
discriminate functions. Rather, some optimal combination of
variables can be determined automatically so that the first
function provides the most overall discrimination between
groups, the second provides second most, and so on. Moreover,
the functions will be independent or orthogonal, that is, their
contributions to the discrimination between groups will not
overlap. Computationally, a canonical correlation analysis can be
performed to determine the successive functions and canonical
roots (the term root refers to the eigenvalues associated with the
respective canonical function). The maximum number of func-
tions will be equal to the number of groups minus one or the
number of variables in the analysis, whichever is smaller.

The influence of each of the uncorrelated variables on the
discriminate analysis can be calculated. The value lr (removed l)
is Wilks’ l computed to test the impact of removing this variable.
The value la (alone l) is Wilks’ l that would be obtained for each
of the p variables if these were the only uncorrelated variables
used. The Wilks’ l in the case of k groups, each with p variables, is
given by

l ¼
jWj

jTj
¼
Ym

j¼1

1

1þ lj
,

where lj is the jth eigenvalue corresponding to the eigenvector, m

is the minimum of k�1, T is the within-groups variance–covar-
iance matrix, and W is the total variance–covariance matrix.
Matrices T and W are given by

T ¼
XN

k¼1

XNi

i¼1

ðXki �MÞðXki �MÞ0

and

W ¼
XN

k¼1

XNi

i¼1

ðXki �MkÞðXki �MkÞ
0,

where M is the vector of means of these variables across all groups
and Mk is the vector of means of observations in the kth group.
The values Fr

v (removed F-value) and Fa
v (alone F-value) give the F-

ratio that is used to test the significance of removing a variable
and the above Wilks’ l, respectively, while Fr

p (removed F-
probability) and Fa

p (alone F-probability) are the probability
(significance level) of removing a variable and the above F-ratio,
respectively. The result of the test is positive (the variable is
important) if this value is less than the value of a (0.10). R2 is the
value that would be obtained if this variable were regressed on all
other uncorrelated variables. When this R2 value is larger than
0.99, severe multicolinearity problems exist. The variables with
large R2 should be removed (one at a time), and the analysis
should be rerun every time.

1.3. Rough set analysis

Various real-life applications of rough set analysis (RSA),
originated by Pawlak (1982), have shown its usefulness in many
domains. This theory depends on a topological structure, called a
quasi discrete topology, generated by the equivalence classes of
the relation defined on the collection of data (Pawlak, 1991).
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