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A B S T R A C T

The design of slice selective pulses for magnetic resonance imaging can be cast as an optimal control
problem. The Fourier synthesis method is an existing approach to solve these optimal control prob-
lems. In this method the gradient field as well as the excitation field are switched rapidly and their
amplitudes are calculated based on a Fourier series expansion. Here, we provide a novel insight into the
Fourier synthesis method via representing the Bloch equation in spherical coordinates. Based on the spher-
ical Bloch equation, we propose an alternative sequence of pulses that can be used for slice selection
which is more time efficient compared to the original method. Simulation results demonstrate that while
the performance of both methods is approximately the same, the required time for the proposed se-
quence of pulses is half of the original sequence of pulses. Furthermore, the slice selectivity of both sequences
of pulses changes with radio frequency field inhomogeneities in a similar way. We also introduce a measure,
referred to as gradient complexity, to compare the performance of both sequences of pulses. This measure
indicates that for a desired level of uniformity in the excited slice, the gradient complexity for the pro-
posed sequence of pulses is less than the original sequence.

© 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

Introduction

Magnetic resonance imaging (MRI) has become one of the most
important medical imaging diagnostic tools available to physi-
cians [1]. The basis of MRI is a phenomenon known as nuclear
magnetic resonance (NMR). It is related to the way in which ele-
mentary particles such as protons interact with external magnetic
fields having static and oscillating components. In MRI, it is possi-
ble to selectively excite the spins in a thin slice of the object by
applying gradient fields [2]. To select a slice in a desired direction,
a gradient field must be applied in that direction and a Radio Fre-
quency (RF) excitation pulse with a limited bandwidth should be
applied perpendicular to the gradient direction [2].

Many methods have been proposed to solve the selective exci-
tation problem for adiabatic and non-adiabatic passages [3–9]. These
methods are based on approximate solutions to the Bloch equa-
tion governing the spin dynamics in MRI, referred to as the Bloch
equation [10–12], or are generated from computer simulations that
predict the bulk magnetisation response to different excitation pat-
terns [13,14]. Fourier analysis of the Bloch equation can be used to

find a selective pulse rotating the bulk magnetisation less than π/2,
see [10] and [15]. In this method, it is assumed that the Bloch equa-
tion behaves linearly for small tip angles.

The design of better pulses requires application of optimal control
theory [16–19]. In [16] a mathematical basis for RF pulse design,
an efficient algorithm to find the optimal pulse is provided. An
optimal pulse is defined as the pulse that steers the magnetisation
from the initial state, closest to the desired final state in a fixed
amount of time. Ensemble controllability of the Bloch equation has
been studied in [20,21].

The Shinnar–Le Roux (SLR) approach, which is ubiquitously used
in designing pulses for MRI machines, is a recursive algorithm for
finding the optimal pulse for a given selective excitation pattern [17].
In this approach the applied pulse is discretised to several rectan-
gular pulses and the effect on the bulk magnetisation is calculated
analytically at each step. As a result, the problem of finding selec-
tive pulses is reduced to the design of two polynomials. In this case,
a selective RF pulse can be calculated through solving finite impulse
response (FIR) filters. A number of variants of the SLR technique for
designing selective pulses are available in the MRI literature [22–25].

Moore et al. in [5,7] have revisited the slice selection problem
in the presence of the RF and the static field inhomogeneities using
composite pulses. Their approach has two major steps. First, they
optimise a non-selective composite pulse to minimise the effect of
field inhomogeneities. In the second step, they use Gaussian or sinc
sub-pulses with time varying gradient fields to enhance the slice
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selectivity of the overall sequence of pulses. The uniformity of the
bulk magnetisation flip angle has been improved in a 7 Tesla human
scanner in the presence of field inhomogeneities.

The Fourier synthesis method is an alternative technique to solve
the optimal control problem for slice selection and RF field inho-
mogeneity suppression [26–30]. The gradient field as well as the
excitation field are switched rapidly to shift the position of an en-
semble of spins gradually. The magnitudes and duration of the
applied fields are calculated based on a Fourier series expansion of
the Bloch equation.

In this paper, we propose a novel sequence of pulses for the
Fourier synthesis method that considerably improves the time ef-
ficiency of this technique while preserving its efficiency in terms
of the selected slice quality. Mathematical induction is employed
to form a proof of the Fourier synthesis method in the spherical co-
ordinates. Numerical simulation for both sequences of pulses is
compared in this paper. Simulation results indicate that the slice
selectivity of both sequences of pulses behaves similarly in the pres-
ence of RF field inhomogeneities.

The Bloch equation

The behaviour of an ensemble of spins at a classical level in the
presence of external magnetic fields may be described by the Bloch
equation [31]. The Bloch equation in the classical rotating frame of
reference whose transverse plane is rotating clock-wise at the Larmor
frequency of the static field, ω0, is written as
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where

u t t B tx
e

e( ) ( ) ( )cos ,≡ =′ω γ φ1 (2a)

v t t B ty
e

e( ) ( ) ( )sin ,≡ =′ω γ φ1 (2b)

and

Δ Δ Δω ω ω γδ γ ω δω ω0 0 0 0( , ) ( ) ( ) ( , ).r G r rrt B t t= − + + ⋅ = + +rf off (3)

The parameters of the Bloch equation are summarised in Table 1.
r is a vector representing position.

If the excitation field is initially applied in the x-direction then
ϕe = 0, and we may write

u t t t B t v t tx
e

y( ) ( ) ( ) ( ), ( ) ( ) .≡ ≡ = ≡ =′ ′ω ω γ ω1 1 0 (4)

Here, ω1(t) is referred to as the Rabi frequency [32–34].

Control of a spin system by the Fourier synthesis method

For a short period of excitation (less than one time constant
( t T� 2( )r ), it is possible to ignore relaxation terms [35] and ap-
proximate the magnetic resonance phenomenon in the classical
rotating frame of reference with the following equation:
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where u(t) and v(t) are defined in Eq. (2). The above equation may
be written as

�

�

�

M

M

M

u t v t t
Mx

y

z

x y z

x′

′

′

′ ′ ′

′⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= − − −( )( ) ( ) ( , )Ω Ω Δ Ωω0 r MM
M

y

z

′

′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, (6)

in which

Ω Ω Ω′ ′ ′= −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −x y z

0 0 0
0 0 1
0 1 0

0 0 1
0 0 0
1 0 0

0 1 0
, , 11 0 0

0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, (7)

and we now assume that Δ Δ Δω ω ω0 = =( , ) ( , )r t z t as only gradient
in z-direction is applied and it dominates the Δωoff and δω0 which
are negligible.

Eq. (6) clearly indicates that the excitation and inhomogene-
ities cause the magnetisation vector to rotate about an axis.1 If
gradient fields are superimposed on the main static field then only
the G rr t( ) ⋅ part of Δω0(r,t) is taken into account. Given that the gra-
dient field is applied in the z-direction, the objective is to find
controls, u(t) and v(t), that can drive the bulk magnetisation to the
desired slice profile such that

J T u v z z dzf f T T d
z f f= −∫ M M( , , , ) ( )[ , ] [ , ]0 0

2
(8)

is minimised. In the above equation, Mf is the final state after the
pulse has been turned off at t = Tf and Md represents the desired state.

Review of the Fourier synthesis method for slice selection in
Cartesian coordinates

The Fourier synthesis method may be used to solve the
optimisation problem indicated by Eq. (8). In this technique during

1 exp( )αΩ ′x , exp( )βΩ ′y , and exp( )γΩ ′z generate rotation matrices about x′, y′, and
z′ axes, respectively.

Table 1
Description of the Bloch equation parameters.

Parameter Description

M(r,t) Magnetisation vector in laboratory frame of
reference

M′(r,t) Magnetisation vector in rotating frame of
reference

M0 Bulk magnetisation magnitude at thermal
equilibrium

T1(r) Longitudinal relaxation time constant
T2(r) Transverse relaxation time constant
γ Gyromagnetic ratio
B0 External static field applied in the z-direction
B1 Excitation or rotating field applied in the xy-

plane
Be

1 Envelope of the excitation field
φe Initial phase of the rotating field
Gr ( )t Gradient field
ω0 = γB0 Larmor frequency of the static field
ωrf Oscillating frequency of the rotating field
ω1(t) Rabi frequency
Δωoff Off-resonance excitation
δω0 = γδB0 Deviation from the Larmor frequency as a

result of the static field imperfection and the
tiny fields induced by the object under study

Δω(r,t) Space-dependent frequency generated by
gradient fields

Δ Δ Δω ω δω ω0 0( , ) ( , )r rt t= + +off Deviation from the Larmor frequency caused
by all possible sources over space and time
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