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A B S T R A C T

Purpose: To obtain specific margin recipes that take into account the dosimetric characteristics of the
treatment plans used in a single institution.
Methods: We obtained dose-population histograms (DPHs) of 20 helical tomotherapy treatment plans
for prostate cancer by simulating the effects of different systematic errors (Σ) and random errors (σ) on
these plans. We obtained dosimetric margins and margin reductions due to random errors (random margins)
by fitting the theoretical results of coverages for Gaussian distributions with coverages of the planned
D99% obtained from the DPHs.
Results: The dosimetric margins obtained for helical tomotherapy prostate treatments were 3.3 mm, 3 mm,
and 1 mm in the lateral (Lat), anterior-posterior (AP), and superior-inferior (SI) directions. Random margins
showed parabolic dependencies, yielding expressions of 0.16σ2, 0.13σ2, and 0.15σ2 for the Lat, AP, and SI
directions, respectively. When focusing on values up to σ = 5 mm, random margins could be fitted con-
sidering Gaussian penumbras with standard deviations ( σ p) equal to 4.5 mm Lat, 6 mm AP, and
5.5 mm SI.
Conclusions: Despite complex dose distributions in helical tomotherapy treatment plans, we were able
to simplify the behaviour of our plans against treatment errors to single values of dosimetric and random
margins for each direction. These margins allowed us to develop specific margin recipes for the respec-
tive treatment technique. The method is general and could be used for any treatment technique provided
that DPHs can be obtained.

© 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

Introduction

Given the uncertainties involved in radiotherapy, a planning target
volume (PTV) should be defined to ensure minimum coverage of
the clinical target volume (CTV). CTV-to-PTV conversion is per-
formed using the margins between both volumes. These margins
should take into account all the uncertainties involved in a treat-
ment planning. The approaches proposed to establish coverage
criteria include dose-probability histograms [1] (with margins en-
suring a probability of having a minimum dose in the CTV) and dose-
population histograms (DPHs) [2,3] (in which a margin recipe is
proposed to ensure that the CTV will receive a minimum dose in a
given percentage of patients).

van Herk et al. [2] investigated the geometrical uncertainties (sys-
tematic and random) involved in radiotherapy and obtained their
effects based on theoretical dose distributions. The authors assumed
that systematic errors produced displacements of the dose distri-
bution with respect to the CTV, while random errors were
responsible for blurring the dose. This approach enabled the def-
inition of a margin recipe that ensured that 90% of patients had a
minimum CTV dose of 95%. Its simplified form was as follows [2]:

M = +2 5 0 7. .Σ σ (1)

The recipe assumed a series of simplifications, such as perfect
conformation of the dose distribution to the PTV and modelling of
the beam penumbra as cumulative Gaussian distributions.

Improvements on this recipe were proposed by McKenzie et al.
[4], who presented different expressions for reduction of margins
caused by random errors (random margins), depending on the beam
setup of the plans. Witte et al. [5] also studied the dependence of
random margins on target size and tissue density and compared
random margins with those proposed in Eq. (1).

* Corresponding author. Radiation Oncology Department, Hospital Universitario
de Torrejón, Medical Physics, c/ Mateo Inurria s/n, 28850 Torrejón de Ardoz, Spain.
Tel.: +34600388626; fax: +34914954503.

E-mail address: dsevillano@gmail.com (D. Sevillano).

http://dx.doi.org/10.1016/j.ejmp.2015.11.001
1120-1797/© 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

Physica Medica 32 (2016) 116–122

Contents lists available at ScienceDirect

Physica Medica

journal homepage: ht tp : / /www.physicamedica.com

mailto:dsevillano@gmail.com
http://www.sciencedirect.com/science/journal/11201797
http://http://www.physicamedica.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejmp.2015.11.001&domain=pdf


These same principles can be directly applied to the analysis of
real treatment plans. If systematic and random errors are applied
to treatment plans, realistic DPHs can be obtained. van Herk et al.
[6] used this method to evaluate the effect of geometric uncertain-
ties on tumour control probability and equivalent uniform dose for
perfectly conformal and realistic 3-field prostate plans.

Song and Dunscombe [7] also analysed the suitability of margins
in a plan with both spherical CTV and organ at risk based on eval-
uation of the equivalent uniform dose in both volumes for different
margins. Margin selection was based on the creation of plans with
different CTV-to-PTV margins. The use of simple 3D conformal ra-
diotherapy plans made this approach possible.

As for more complex techniques, Arnaud et al. [8] presented
results for the dose delivered to the CTV in intensity-modulated ra-
diation therapy (IMRT) for prostate cancer depending on the setup
protocol and on the margins applied. Bos et al. [9] compared DPHs
to determine which techniques of prostate IMRT were less sensi-
tive to set-up errors. Gordon et al. [10] analysed the outcome of real
IMRT plans for a series of geometrical uncertainties and found that
clinical plans could absorb wider uncertainties than those pre-
dicted by the formula of van Herk et al. In a later study based on
the same plans, Gordon and Siebers [11] attributed this discrep-
ancy to imperfect conformance of the dose distributions and obtained
the dosimetric margins of those plans by direct measurement of the
distances between the PTV and the isodose of interest.

In this study, we attempt to obtain a margin recipe that takes
into account the characteristics of the treatment plans obtained at
specific institutions, by avoiding recipes that make general assump-
tions about the nature of the dose distributions. Our approach is
to simulate various systematic and random errors in those plans,
obtaining the DPHs for each of the error distributions. By analysing
the coverage probability of a specific dose in our patient popula-
tion, and comparing it with the theoretical probability given by
certain margins based on Gaussian distributions, we can infer both
mean dosimetric margins and mean random margins according to
the treatment technique and the treatment site. Our methodology
is general and can be used for any technique and treatment site,
provided that simulations of the effect of geometrical uncertain-
ties on plans are performed.

Methods

Treatment plans

We evaluated 20 tomotherapy plans delivered in our institu-
tion for prostate cancer, 11 of which involved irradiation of the
prostate and seminal vesicles, 4 the prostate only, and 5 the pelvic
nodes. The dose prescribed was 70.2 Gy (in 27 fractions) for pros-
tate PTV, 54 Gy for seminal vesicles volume, and 48.6 Gy for pelvic
volume. Only coverage of the prostate CTV was analysed. CTV-to-
PTV margins were 7 mm in the lateral direction (Lat), 5 mm in the
anterior-posterior (AP) direction, and 9 mm in the superior-
inferior (SI) direction.

Calculation of dose-population histograms

DPHs represent the distribution of values of a specific dose pa-
rameter within a patient population [2]. These are characterised by
geometric uncertainties that occur during the preparation of the
treatment.

Two types of uncertainties – or errors – are usually defined: sys-
tematic errors and random errors. Systematic errors yield an average
displacement during treatment. They are also called preparation
errors, as they occur during preparation of treatment. Random errors
do not imply an average error in treatment, but are responsible for

the dispersion of the positions on each treatment day; therefore,
they are also called execution errors [3].

The effects of systematic and random errors on dose distribu-
tion are well documented [2,3]. Random errors lead to blurring of
the planned dose, while systematic errors produce a displace-
ment of the CTV over the previously blurred dose matrix. Random
and systematic errors are assumed to be normally distributed, with
standard deviations σ and Σ, respectively.

In the present study, we focused on the distribution of the CTV
coverage at D99% (as a representative of the minimum dose).

Random errors were simulated by convolution of the dose matrix,
with 3-dimensional Gaussian matrices having standard devia-
tions equal to σ, while the effect of systematic errors was based on
the creation of 200 random displacements following Gaussian dis-
tributions with standard deviations equal to ∑. Two hundred
displacements were used to ensure good reproducibility of results
(SD = 0.3% in DPHs for D99% = 1).

This approach is valid if a series of requisites are fulfilled: the
number of fractions should be sufficiently high [12], and the dis-
placements of the beam setup inside the patient should produce
only the effect of displacing the dose matrix inside the patient (shift
invariance). Our treatments are administered in 27 fractions, and
the characteristics of homogeneous density and anatomical situa-
tion of the CTV enable us to assume shift invariance [10,13,14].

A CTV dose-volume histogram (DVH) was obtained for each of
these 200 displacements. Then, after obtaining the D99% of each
DVH, DPHs representing the probability that a patient has a spe-
cific D99% or higher were calculated.

As stated above, target coverage was based on the D99% deliv-
ered to the PTV in the treatment plan. Therefore, all plans were
normalised so that the D99% to the prostate PTVs had a value of 1.
The coverage probability for a given systematic and random error
is the value of the DPH of all plans (global DPH) at a normalised
dose value of 1. The use of the planned D99% enabled us to avoid
differences in dose normalisation of the plan and also has the ad-
vantage that data can be obtained based on the treatment plan itself.

Systematic error distributions were consecutively tested in each
direction. This approach speeds up calculation time and allows for
easy differentiation of the behaviour of the plans for each direc-
tion. Distributions of systematic errors were tested with ∑ from
3 mm to 15 mm in steps of 3 mm. As we were interested in values
of errors that could cover a wide range of probabilities, values were
chosen in order to find a suitable margin, even though they were
not clinically relevant. In addition, the use of 1D Gaussian distri-
butions (a margin of 2.5∑ in a 1D distribution gives a probability
of 98.7% compared to 90% in a 3D distribution) and the presence
of margins already applied in the treatment made it necessary to
widen the ∑ used. In the case of random errors, the values used were
σ = 0 mm, 3 mm, 4.5 mm, 6 mm, and 7.5 mm. Due to the low effect
of random errors on margins, the lowest value of σ used was 3 mm.
Below this, the effect on margin reduction is so small that it could
not be calculated accurately. The largest values of σ were used (even
though they are too high to be found in clinical practice) in order
to achieve a sufficiently accurate empirical expression of margins.

Margin formula

Assuming that systematic errors follow a normal distribution,
the DPH at a specific dose is the probability obtained from the in-
tegration of a normal 3D distribution function over the volume
within certain limits, as follows:
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