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a b s t r a c t

This study focuses on predicting breathing pattern, which is crucial to deal with system latency in the
treatments of moving lung tumors. Predicting respiratory motion in real-time is challenging, due to the
inherent chaotic nature of breathing patterns, i.e. sensitive dependence on initial conditions. In this
work, nonlinear prediction methods are used to predict the short-term evolution of the respiratory
system for 62 patients, whose breathing time series was acquired using respiratory position manage-
ment (RPM) system. Single step and N-point multi step prediction are performed for sampling rates of
5 Hz and 10 Hz. We compare the employed non-linear prediction methods with respect to prediction
accuracy to Adaptive Infinite Impulse Response (IIR) prediction filters. A Local Average Model (LAM) and
local linear models (LLMs) combined with a set of linear regularization techniques to solve ill-posed
regression problems are implemented. For all sampling frequencies both single step and N-point multi
step prediction results obtained using LAM and LLM with regularization methods perform better than IIR
prediction filters for the selected sample patients. Moreover, since the simple LAM model performs as
well as the more complicated LLM models in our patient sample, its use for non-linear prediction is
recommended.

© 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

Introduction

Tumor motion due to breathing poses challenges for precise ra-
diation dose delivery to a tumor while sparing surrounding healthy
organs. Mostly, all respiratory-compensatingmethods developed or
being investigated require predictive filters to tackle inherent sys-
tem latencies in radiationdelivery systems. The synergistic approach
of real-time imagingwith a powerful and accurate prediction engine
is a key to successful tumormotionmanagement. The review article
by Verma et al. presents mathematical models for all major predic-
tion algorithms that have been developed in the last decade. In
summary, the review concludes that predictions with long latency
are error prone and are not accurate enough to be implemented
clinically [1]. Specifically, the prediction algorithm by Vedam et al.
[2] uses leastmeansquare (LMS) toupdate thefilter coefficients after
each prediction. Other adaptive models of the respiration motion

include neural network models with integrated linear or nonlinear
filters [3,4], and the finite state model of Wu et al. [5]. Ruan et al. [6]
used subspace projection methods to derive models of periodic
respiratory signals. The Ruan projection models use Fourier spectra
and least-squared-error analysis tofind thebest-fit periodicity of the
respiration signal. Recently, Ernst et al. [7] have compared normal-
ized least mean square (nLMS), recursive least squares (rLS), and a
wavelet-based autoregression (wLMS) as well as a support vector
regression algorithm and a Kalman filtering approach for prediction
horizons ranging from 77 ms to 307 ms. They conclude that for a
prediction horizon of 300 ms, their support vector machine (SVM)
regression implementation yields the best results.

In this work, we present state-space based non-linear methods
for the prediction of respiratory signals for prediction horizons
ranging from 400 ms to 3000 ms. The presented non-linear predic-
tion methodologies can be directly implemented on tumor co-
ordinates once they become available with the advent of newer
tumor tracking technologies such as the Calypso™ tracking system
(Calypso, Seattle, Washington) or the MRIdian™, a real-time MR
Radiotherapy systemdeveloped by Viewray (Viewray Inc., Cleveland,
OH) with which it will be possible to acquire real-time MR images at
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a frame rate of 4 images/sec. While linear predictive (LP) models,
such as infinite impulse response (IIR) prediction filters, have been
employed with great success for short prediction horizons ranging
from 50 to 200 ms for a deterministic non-linear systems that
exhibit sensitive dependence on initial conditions, their capacity to
yield accurate prediction deteriorates for N-point multi-step pre-
diction for different sampling/imaging rates especially in the pres-
ence of measurement noise. In our previous work, we have
established that the breathing of lung cancer patients can be
described as a 5 to 6 dimensional nonlinear, stationary and deter-
ministic system that exhibits sensitive dependence on initial con-
ditions, and hence any of the existing linear prediction models can
only be used successfully for short prediction horizons(�300 ms)
[8]. The intended purpose of this paper is to investigate non-linear
prediction algorithms that yield long prediction horizons
(>300 ms). In particular, a one-dimensional time series obtained by
measuring the behavior of a multidimensional dynamical system as
a function of time can be used to reconstruct the underlying attractor
using the time-delay embedding theorem [9]. We have applied a
number of nonlinear prediction methods to successfully predict the
time evolution of the breathing pattern for 62 lung cancer patients
for a time ahead prediction horizons ranging from 400 to 3000 ms.
Both single-step and N-point multi-step prediction are performed
for sampling rates of 5 Hz and 10 Hz. For N-point multi-step ahead
prediction, an iterative scheme is used and the single-step ahead
predictions from previous steps are used to make prediction at the
current step. We have also compared the non-linear prediction
methods to the prediction accuracy from an Adaptive Linear Pre-
dictive (ALP) model based on an IIR prediction filter.

Methods and materials

1. State space representation

Scalar time series data of respiratory signals were obtained us-
ing the respiratory position management (RPM) systemwith a rate
of 30 frames/sec. Suppose xi are scalar samples acquired at times ti
separated by a fixed time interval ts, yielding the scalar time series
S ¼ {xi}i2T;T ¼ {1,…,M}. Using time delay embedding, the data can
be represented in anm-dimensional state space as shown in Eq. (1),
where t is the embedding time delay and m is the embedding
dimension.

~xi ¼
�
xi�ðm�1Þt; xi�ðm�2Þt;…; xi�t; xi

�
; i ¼ 1þ ðm� 1Þt;…; t

(1)

The reader is referred to [8] for a detailed description of the
chaotic characteristics of breathing. Signals were normalized such
that the maximum peak-to-peak amplitude is equal to unity.

2. Adaptive linear prediction model (ALP model)

A linear predictor is a system that predicts the future output
signal as a linear function of a set of inputs [2,10]. We consider
linear predictors that are based on an AR (autoregressive) model,
i.e. that have the form

x
_
tþD ¼

Xm
j¼1

ajxt�j$ts

εtþD ¼ bxtþD � xtþD

(2)

where xt is the amplitude of the scalar signal at time t, m is the order
the ARmodel. The estimated signal at bxtþD is therefore predicted as
a linear combination of the known previous positions xt through

xt�j$ts. Note that the noise component has been suppressed, which
for prediction purposes has to be averaged over the AR part only. In
case of an ALP model, the optimum set of coefficients are contin-
ually found by minimizing the mean squared error (εtþD) of pre-
dictions on a set of training samples based on the respiratory
motion data collected prior over a signal history length (SHL). Using
the so determined optimum set of coefficients, {aj}j 2 {1,……,SHL}
the breathing signal was predicted 400e3000 ms into the future.

3. Model free local prediction method in state space (LAM model)

The simplest form of non-linear local prediction in state space is
to consider the most similar segment of a given scalar time series
S ¼ {xi}i2T;T ¼ {1,…,M} in the past, that is one uses the nearest
neighbor vectors of ~xt on the time-delay reconstructed attractor
formed from the scalar time series S, ~xtðiÞ, with time indices
t(i) < t�t in the past, to predict the time series point xt N-time steps
ahead, bxtþN , by taking the average of nearest neighbors in the past,
N ¼ f~xtð1Þ;…; ~xtðkÞg that are mapped N-time steps ahead on the
time-delay reconstructed attractor formed from S. The set of vec-
tors N ¼ f~xtð1Þ;…; ~xtðkÞg and ~xt are vectors of length m, wherem is
the embedding dimension. This can be expressed mathematically
as follows

bxtþN ¼ 1
jNj

X
~xtðiÞ2N

xtðiÞþN (3)

where jN j denotes the number of elements contained in N , the set
of nearest neighbor vectors. The idea of analogues, i.e. finding
similar segments in scalar time series data using a time-delay
reconstruction of the underlying attractor, is directly related to
the property of recurrence of orbits of dynamical systems, which
furnishes the theoretical underpinning for the use of non-linear
local predictions [11,12]. Hence, the problem of predicting the
future value of xt N-time steps ahead is reduced to finding the
nearest neighbor vectors of ~xt in the past record on the time-delay
reconstruction of the underlying attractor and to use them
to obtain the prediction bxtþN . We have employed as our
distance measure the Euclidean norm (l2-norm) between the
query vector ~xt and the input vectors ~xtðiÞ defined

as
���~xt � ~xtðiÞ

��� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~xt � ~xtðiÞÞT ð~xt � ~xtðiÞÞ

q
. Compared to the other two

frequently used norms, namely the l1-norm and the Supremum
norm (l∞-norm), the Euclidian norm allows one to find an inter-
mediate number of nearest neighbor vectors, while the l1-norm
will yield the least and the l∞-norm the most nearest neighbor
vectors. Since all the breathing waveforms are normalized, this
distance measure has no units.

Even if the original dynamics is chaotic, close orbits diverge only
gradually from each other and hence some degree of short-term
prediction can be achieved using this method [11]. However, if
the reconstructed state space dimension is too low, then orbits
starting from ~xt and its nearest neighbor vectors in the past may not
deviate as smoothly on the time-delay reconstructed attractor
formed from S as they do on the true underlying attractor. There-
fore, careful state space reconstruction is of immense importance
for local prediction, and this does not only rely on the selection of
embedding dimension, m, and delay time t but rather on the se-
lection of embedding window length, tw. The embedding window
length tw ¼ (m � 1)t is the length of data segments on the tra-
jectory of the underlying attractor. If one maintains a constant
embedding length tw, state space reconstructions for varyingm are
qualitatively the same [13] (adjusting t accordingly, so that
tw ¼ (m � 1)t is constant).
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