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a b s t r a c t

We define pointwise convergence, uniform convergence, �-convergence and convergence in

supremum metric for the intuitionistic fuzzy sets. The uniform convergence is in the topology

induced by lower and upper pseudo metrics. The �-convergence is the Kuratowski–Painlevé

convergence of the endographs of the intuitionistic fuzzy sets. The supremum metric is the

supremum of Hausdroff distance among the ζ -cuts of the intuitionistic fuzzy sets. We dis-

cuss the mutual relationship of these convergences. Topological structures are also discussed

in detail. Adequate number of examples are given to illustrate the relationship among these

convergences.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fuzzy mathematics has proved its usefulness over the

years and able to solve many problems which classical logic

unable to handle. This theory was started by Zadeh [28] in

1965. Fuzzy sets have found several flourishing applications

in various fields including control [18], robot selection [23],

intelligent systems [7], satellite image analysis [1] and the

list goes on. A fuzzy set is a function from a topological space

(X, τ ) to [0, 1]. Convergence of fuzzy sets is an important

subject in fuzzy set theory. There are several types of fuzzy

sets convergences in literature [12–15,26]. Pedraza et al.

discussed the relationship between pointwise convergence,

�-convergence and convergence in supremum metric of

fuzzy sets in [22]. In 1986, Atanassov [3] introduced the con-

cept of Intuitionistic Fuzzy Sets (IFS) as a generalization of

fuzzy sets. That deals with more ambiguous situations. IFS

is a function f from a topological space (X, τ ) to T, where

T = {(α,β) ∈ [0, 1]2 : α + β ≤ 1}. We refer to the book of

Atanassov [4] for the basics on IFS.
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Recently, statistical convergence of intuitionistic fuzzy

sets in the settings of norm space is discussed in [2,8,19–

21,25]. Intuitionistic fuzzy norms deal the situations where

norms of the vectors cannot be found exactly. The notion of

statistical convergence is useful to measure the numerical

convergence by means of the density. Our approach is more

classical in the sense that we use topological structures with-

out imposing the conditions of norm space.

The main purpose of this paper is to study pointwise con-

vergence, uniform convergence, �-convergence and conver-

gence in supremum metric for the intuitionistic fuzzy sets

and discuss the mutual relationships among these conver-

gences. This paper is organized as follows. In Section 2, we

start with preliminary and auxiliary results needed in the

rest of the paper. In Section 3, topological structure on T
is discussed in detail. In Section 4, relationship between �-

convergence and pointwise convergence of IFS is studied.

Section 5 is dedicated to convergence in supremum metric

and its relation with other convergences. Some concluding

remarks are given in the last section.

2. Preliminaries

Deschrijver and Kerre [9] have shown that intuitionistic

fuzzy sets can also be consider as L-fuzzy sets in the sense
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of Goguen [11]. They also defined the order as follows: for

ζ = (αζ , βζ ), η = (αη, βη) ∈ T, ζ ≤ η if and only if αζ ≤ αη

and βζ ≥ βη . With this ordering T is a complete lattice, but

it is not a totally ordered set. The maximum and minimum is

max (ζ , η) = ( max (αζ , αη), min (βζ , βη)) and min (ζ , η) =
( min (αζ , αη), max (βζ , βη)), respectively. For a subset A of

T, sup A := ( max αx, min βx) and inf A := ( min αx, max βx)
for all x ∈ A. Note that (1, 0) is the largest and (0, 1) is the

smallest element in T.

In this paper, de is used for usual Euclidean metric on R2

or any of its subsets. For a metric space (X, d) we denote

Bd(x, r) as an open ball for radius r > 0 and for A ⊆ X define

Bd(A, r) = ∪x∈ABd(x, r). In case of topological space (X, τ ), Nx

is the set of all neighborhoods of x ∈ X.

Let f be an IFS then the endograph or hypograph of f is

defined as end f := {(x, ζ ) ∈ X × T : ζ ≤ f (x)}, similarly epi-

graph is defined as epi f := {(x, ζ ) ∈ X × T : f (x) ≤ ζ } and

the ζ−cut is defined as [f]ζ := {x ∈ X: ζ ≤ f(x)}. A func-

tion can described uniquely by its endograph or ζ−cuts.

We will consider the endographs in the topological space

(X × T, τ × τde
).

Consider a net {Aλ}λ ∈ 	 in topological space (X, τ ) then

• A subset of 	 is said to be residual if it contains all indices

at or beyond some index λ.

• A subset of 	 is said to be cofinal if it contains some in-

dices at or beyond each index λ.

• the lower limit of {Aλ}λ ∈ 	 is the set

Li Aλ = {x ∈ X : U ∩ Aλ 	= ∅ residually, ∀ U ∈ Nx};
• the upper limit of {Aλ}λ ∈ 	 is the set

Ls Aλ = {x ∈ X : U ∩ Aλ 	= ∅ cofinally, ∀ U ∈ Nx}.
We say a net {Aλ}λ ∈ 	 in (X, τ ) is lower (resp.

upper) Kuratowski–Painlevé convergent to A⊆X if A ⊆
Li Aλ (resp. Ls Aλ ⊆ A). For more details see [5, page 2,

145]. �-convergence is the Kuratowski–Painlevé conver-

gence of the endographs of IFS. �-convergence and its

counter part epi-convergence have their roots in Con-

vex Analysis [5,6,10,17]. These convergences are due to

infimal convergence for convex functions, introduced by

Wijsman [27] . Maximizers are important in Variational

Calculus (see [24]) and also in discussion of the re-

lationship between �-convergence and convergence in

supremum metric.

Consider a metric space (X, d), we define the supremum

metric between the two IFS as the supremum of the distance

between their ζ−cuts in Hausdroff extended pseudometric

Hd. Hausdroff extended pseudometric between two subsets of

X is defined as

Hd(A, B) = max (ed(A, B), ed(B, A))

where

ed(A, B) =
{

supa∈A d(a, B) if A 	= ∅
0, if A = ∅

is the excess of A over B.

Hd(A, B) can be characterize as

Hd(A, B) = max{inf{ε > 0 : A ⊆ Bd(B, ε)},
inf{ε > 0 : B ⊆ Bd(A, ε)}} (1)

where inf is +∞ if no such ε exists.

3. Topological structure and convergence on T

In this section, basic definitions of convergences and

structures on T are given, which will be useful in our study.

Definition 3.1. For a net {xλ}λ ∈ 	 in T, we define

• the lower limit of {xλ}λ ∈ 	 as

lim inf
λ∈	

xλ = sup
λ′∈	

inf
λ≥λ′

xλ;

• the upper limit of {xλ}λ ∈ 	 as

lim sup
λ∈	

xλ = inf
λ′∈	

sup
λ≥λ′

xλ.

Definition 3.2. A net {xλ}λ ∈ 	 in T is:

• Lower convergent to x ∈ T if lim infλ∈	 xλ ≥ x, Clower is the

collection of all such x;

• Upper convergent to x ∈ T if lim supλ∈	 xλ ≤ x, Cupper is

the collection of all such x;

• Convergent to x ∈ T if lim infλ∈	 xλ = lim supλ∈	 xλ = x.

This order ≤ is quite useful because in this order-

ing the lower and the upper convergences are topologi-

cal. Consider the lower topology induces by lower pseu-

dometric dlower(ζ , η) = max (αζ − αη,βη − βζ , 0), then it is

easy to verify that convergence in this topology and lower

convergence coincides. Similarly, for the upper conver-

gence we have upper topology with the upper pseudometric

dupper(ζ , η) = max (αη − αζ , βζ − βη, 0). The types of open

sets and regions of convergence are shown in Fig. 1.

Definition 3.3. For a given x ∈ T, a net {xλ}λ ∈ 	 in T is said

to be:

• ϱ≤-convergent to x if there exits λ0 such that x ≤ xλ for all

λ ≥ λ0;

• ϱ≥-convergent to x if there exits λ0 such that x ≥ xλ for all

λ ≥ λ0.

Note that ϱ≤-convergence is given by Alexandroff topol-

ogy associated with partial order ≤ of T, whose open sets

are

τ≤ = {O ⊆ T : if ζ , η ∈ T, ζ ∈ O and ζ ≤ η then η ∈ O}.
Similarly, ϱ≥-convergence is given by Alexandroff topology

associated with partial order ≥ of T, whose open sets are

τ≥ = {O ⊆ T : if ζ , η ∈ T, ζ ∈ O and ζ ≥ η then η ∈ O}.
The structure of open sets in τ≤ and τ≥ are shown in

Fig. 2.

Convergence in τ≤ (resp. τ≥) implies lower (resp. upper)

convergence but the converse is not true in general. We give

two more definition of convergences, which are also useful in

our study.

Definition 3.4. For a given x ∈ T, we say that a net {xλ}λ ∈ 	

in T is:

• ϱ<-convergent to x if there exits λ0 such that x < xλ for all

λ ≥ λ0;

• ϱ> -convergent to x if there exits λ0 such that x > xλ for all

λ ≥ λ0.
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