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a b s t r a c t

Electromagnetic waves in non-integer dimensional spaces are considered in the framework of

continuous models of fractal media and fields. Using the recently suggested vector calculus for

non-integer dimensional space, we consider electromagnetic fields in isotropic case. This D-

dimensional calculus allows us to describe fractal properties by continuous models with non-

integer dimensional spaces. We prove that the wave equation for non-integer dimensional

space is similar to equation of waves in non-fractal medium with heterogeneity of power-law

type. The speed of electromagnetic waves and the effective refractive index of non-integer

dimensional spaces and fractals are discussed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fractals are measurable metric sets with non-integer di-

mensions [1,2]. We can describe fractal media by using meth-

ods of “analysis on fractals” [3,4]. At present an application

of the “analysis on fractals” to solve differential equations on

fractals [4] for real physical problems is limited by a weak de-

velopment of this area of mathematics. We can consider frac-

tal media as continuous media in non-integer dimensional

space. The non-integer dimension does not reflect all prop-

erties of the fractal media, but it is a main characteristic of

fractal media. For this reason, continuous models with non-

integer dimensional spaces can allow us to get some impor-

tant conclusions about the behavior of the fractal media.

Continuous models for fractal distributions of charges,

currents, media and fields have been proposed in [5–9].

These models are based on the notion of power-law den-

sity of states [10]. To take into account this density of states,
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we use the fractional-order integrals that is connected with

fractional-dimensional integration [8,10]. It should be noted

that fractional-order integrals and derivatives are used to

describe fractional nonlocal models, which are based on

fractional-order vector calculus [11] in general. The sug-

gested continuous models of fractal media and electromag-

netic fields have been developed in works [12–14] and [15–

24] to describe anisotropic fractal media and electromagnetic

waves in fractional space. Continuous models that are used

in [15–24], are based on fractional dimensional generaliza-

tions of the scalar Laplace operators, which are proposed in

papers [25,26]. It should be noted that the first-order differ-

ential vector operators (gradient, divergence, curl), and the

vector Laplacian are not considered in [25,26]. This greatly

restricts us in application of non-integer dimensional space

approach to describe fractal media and fields. For example,

the scalar Laplacian cannot be used for the electric field E(r,

t) and the magnetic fields B(r, t) in the framework of contin-

uous models with non-integer dimensional spaces.

An attempt to suggest first-order differential vector op-

erators for non-integer dimensional spaces has been pro-

posed in [18–24]. In these works, the operators are suggested
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only as approximations of the square of the Laplace opera-

tor. Recently a generalization of differential vector operators

of first orders (grad, div, curl), the scalar and vector Laplace

operators for non-integer dimension spaces have been sug-

gested in papers [28–30] without any approximation. This

allows us to extend the application area of continuous

models with non-integer dimensional spaces. Using this new

D-dimensional vector calculus, we can describe isotropic and

anisotropic fractal media by using the non-integer dimen-

sional space approach.

In this paper, we use the non-integer dimensional vector

calculus, which is proposed in paper [28], to describe electro-

magnetic waves in non-integer dimensional spaces, fractals

and isotropic fractal media. We prove that the wave equa-

tions for non-integer dimensional spaces are similar to the

equations of waves in usual (non-fractal) media with power-

law heterogeneity.

2. Vector differentiation for non-integer dimensional

space

In the continuous models of fractal media, it is convenient

to work with the physically dimensionless variables x/R0 → x,

y/R0 → x, z/R0 → x, r/R0 → r, where R0 is a characteristic size

of considered model. This yields dimensionless integration

and dimensionless differentiation in D-dimensional space. In

this case the physical quantities of fractal media have correct

physical dimensions.

Let us give some introduction to non-integer dimensional

differentiation of integer orders (for details, see [25–29]). The

vector differential operators for non-integer dimension have

been derived in [28] by analytic continuation in dimension

from integer n to non-integer D.

For simplification we will consider spherically symmetric

case of fractal media, where scalar field ϕ and vector fields E,

B are independent of angles

ϕ(r, t)=ϕ(r, t), E(r, t)= Er(r, t) er, B(r, t)= Br(r, t) er,

where er = r/r, r = |r|. Here Er = Er(r) and Br = Br(r) are

the radial component of E and B. In this case, we will work

with rotationally covariant functions only. This simplification

is analogous to the simplification of integration over non-

integer dimensional space suggested in [27]. One of the main

our simplification is that the electromagnetic components

are radial functions. We note that for random fractals, this

assumption is natural [38,39].

In general, the dimension D of the region VD of fractal me-

dia and the dimension d of boundary Sd = ∂VD of this region

are not related by the equation d = D − 1, i.e.,

dim (∂VD) �= dim (VD) − 1, (1)

where dim (VD) = D and dim (∂VD) = d. We will use the pa-

rameter

αr = D − d, (2)

which is a dimension of fractal medium along the radial di-

rection.

In [28], the differential operators for non-integer D have

been proposed in the following forms.

For non-integer dimensional space, the divergence oper-

ator for the vector field E = E(r) can be represented [28] in

the form

Div
D,d
r E = π(1−αr)/2 �((d + αr)/2)

�((d + 1)/2)

×
(

1

rαr−1

∂Er(r)

∂r
+ d

rαr
Er(r)

)
. (3)

This is (D, d)-dimensional divergence operator for fractal me-

dia with d �= D − 1. For αr = 1, i.e. d = D − 1, Eq. (3) gives

Div
D
r E = ∂Er(r)

∂r
+ D − 1

r
Er(r). (4)

The gradient for the scalar field ϕ(r) = ϕ(r) depends on

the radial dimension αr [28] in the form

Grad
D,d
r ϕ = �(αr/2)

παr/2 rαr−1

∂ϕ(r)

∂r
er. (5)

For αr = 1, i.e. d = D − 1, the gradient in non-integer dimen-

sional space is

Grad
D
r ϕ = ∂ϕ(r)

∂r
er. (6)

The curl operator for the vector field E = E(r) is equal to

zero, Curl
D
r E = 0.

Using the operators (3) and (5) for the fields ϕ = ϕ(r)
and E = E(r) er, in paper [28] we obtain the scalar and vector

Laplace operators for the case d �= D − 1 by the equation

S�D,d
r ϕ = Div

D,d
r Grad

D,d
r ϕ, V �D,d

r E = Grad
D,d
r Div

D,d
r E.

(7)

Then the scalar Laplacian for d �= D − 1 for the field ϕ =
ϕ(r) is

S�D,d
r ϕ = �((d + αr)/2)�(αr/2)

παr−1/2 �((d + 1)/2)

×
(

1

r2αr−2

∂2ϕ

∂r2
+ d + 1 − αr

r2αr−1

∂ϕ

∂r

)
, (8)

For αr = 1, i.e. d = D − 1, Eq. (8) gives

�D
r ϕ = Div

D
r Grad

D
r ϕ = ∂2ϕ

∂r2
+ D − 1

r

∂ϕ

∂r
S, (9)

where we use �(1/2) = √
π .

The vector Laplacian in non-integer dimensional space

with d �= D − 1 and the field E = Er(r) er is

V �D,d
r E = �((d + αr)/2)�(αr/2)

παr−1/2 �((d + 1)/2)

(
1

r2αr−2

∂2Er(r)

∂r2

+d + 1 − αr

r2αr−1

∂Er(r)

∂r
− dαr

r2αr
Er(r)

)
er. (10)

For αr = 1, i.e. d = D − 1, Eq. (10) gives

V �D
r E = Grad

D
r Div

D
r E

=
(
∂2Er(r)

∂r2
+ D − 1

r

∂Er(r)

∂r
− D − 1

r2
Er(r)

)
er. (11)

For D = 3 Eqs. (4)–(11) give the well-known expressions

for the gradient, divergence, scalar Laplacian and vector

Laplacian in R
3 for fields ϕ = ϕ(r) and E(r) = Er(r) er .

The vector differential operators (3), (5), (8) and (10),

which are suggested in [28], allow us to describe complex

fractal media with the boundary dimension d �= D − 1 by the

non-integer dimensional space approach.
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