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a b s t r a c t

The dynamical behavior and exact solutions of the quadratic mixed-parity Helmholtz–Duffing

oscillator are studied by using bifurcation theory of dynamical systems. As a result, all possible

phase portraits in the parametric space are obtained. All possible explicit parametric represen-

tations of the bounded solutions (soliton solutions, kink and anti-kink solutions and periodic

solutions ) are given. When parameters are varied, under different parametric conditions, var-

ious sufficient conditions guarantee the existence of the above solutions are given.
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1. Introduction

The nonlinear Helmholtz–Duffing oscillator has received

lots of attention especially in the last decade. The interest

arises from large number of applications in the mathemat-

ical interpretation of the engineering problems such as ship

dynamics, oscillation of the human eardrum, oscillations of

one dimensional structural system with an initial curvature,

some electrical circuits, microperforated panel absorber and

heavy symmetric gyroscope [1–4].

Recently, Alías-Zúñiga [5] considered the quadratic

mixed-parity Helmholtz–Duffing oscillator as follows:

d2x

dt2
+ f (x) = 0, f (x) = Ax + Bx2 + εx3 + D1, (1.1)

where x denotes the displacement of the system, A is the nat-

ural frequency, ε is a non-linear system parameter, and B and

D1 are system parameters independent of time. By using Ja-

cobi elliptic functions, Alías-Zúñiga derived the exact peri-

odic solution of Eq. (1.1). Obviously, When B = 0 and D1 = 0,
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Eq. (1.1) is a Duffing oscillator, while Eq. (1.1) becomes a

Helmholtz oscillator with a single-well potential when ε = 0

and D1 = 0. When A = 1, B = 1 − ε and D1 = 0, Eq. (1.1) be-

comes a Helmholtz–Duffing oscillator which has been stud-

ied by many other authors [6–11].

However, to the best of author’s knowledge, the literature

dealing with Eq. (1.1) is very limited. In this paper, we shall

investigate the exact solutions of Eq. (1.1) in detail by using

the bifurcation theory of dynamical systems [12–17].

Eq. (1.1) is equivalent to the planar system

dx

dt
= y,

dy

dt
= −Ax − Bx2 − εx3 − D1, (1.2)

with the first integral

H(x, y) = 1

2
y2 + A

2
x2 + B

3
x3 + ε

4
x4 + D1x = h. (1.3)

System (1.2) is a four-parameter planar dynamical system

depending on the parameter set (A, B, ε, D1). Since the phase

orbits defined by the vector fields of (1.2) determine all the

solutions of (1.1), we should investigate the bifurcations of

phase portraits of (1.2) in the (x, y)−phase plane as the pa-

rameters are changed. Here we consider a physical model

where only bounded solutions are meaningful. So we only
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pay attention to the bounded solutions of (1.2) and restrict

our analysis to the case ε �= 0.

Suppose that x(t) is a continuous solution of (1.2) for t ∈ R

and limt→±∞ x(t) = a±. It is well-known that (i) x(t) is called

a soliton solution if a+ = a−; (ii) x(t) is called a kink (or anti-

kink) solution if a+ �= a−. Usually, a homoclinic, heteroclinic

and periodic orbit of (1.2) respectively corresponds to a soli-

ton, kink and periodic solution of (1.1). Thus, to investigate all

possible bifurcations of soliton, kink (or anti-kink) and peri-

odic solutions of (1.1), we need to find all periodic annuli, ho-

moclinic orbits and heteroclinic orbits of (1.2), which depend

on the system parameters [18,19].

This paper is organized as follows. In Section 2, we dis-

cuss the bifurcations of phase portraits of (1.2). In Sections 3,

by considering the dynamics of the solutions determined by

the system, we shall give all possible exact explicit paramet-

ric representations of bounded solutions of (1.1) in the dif-

ferent parameter regions by using the elliptic functions and

hyperbolic functions [20].

2. Phase portraits and bifurcation sets of Eq. (1.2)

In this section, we shall study all phase portraits and bi-

furcation sets of (1.2) in the parameter space.

Clearly, on the (x, y) phase plane, the abscissas of equi-

librium points of the system (1.2) are the zeros of the func-

tion f (x) = Ax + Bx2 + εx3 + D1. For ε �= 0 and D1 �= 0, denote

that

�1 = 3Aε − B2,�2 = 9Aε − 27D1ε
2 − 2B3

�3 = B2A2 + 18ABεD1 − 27D2
1ε

2 − 4D1B3 − 4A3ε.

The roots of the cubic equation f (x) = 0 can be expressed us-

ing Cardano’s formulas [21], as

x1 = − B

3ε
+ 22/3

6ε
(�2 + i

√
�3)

1/3 − 21/3

3ε

�1

(�2 + i
√

�3)1/3
,

x2 = − B

3ε
− 41/3

12ε
(1 + i

√
3)(�2 + i

√
�3)

1/3

+ 1 − i
√

3

3 · 41/3ε

�1

(�2 + i
√

�3)1/3
,

x3 = − B

3ε
− 41/3

12ε
(1 − i

√
3)(�2 + i

√
�3)

1/3

+ 1 + i
√

3

3 · 41/3ε

�1

(�2 + i
√

�3)1/3
.

Thus, it is easily to see that the distribution of the equilib-

rium points of (1.2) as follows.

(1) When �3 < 0, (1.2) has only one equilibrium point

E1(x1, 0).

(2) When �3 > 0, (1.2) has three equilibrium points E1(x1,

0), E2(x2, 0) and E3(x3, 0).

(3) When �3 = 0, (1.2) has two equilibrium points

E∗
1
(x∗

1
, 0) and E∗

2
(x∗

2
, 0), where x∗

1
= −�2/(3ε�1) is a

single real root of f(x) and x∗
2 = �2/(6ε�1) is a multi-

ple real root of f(x).

For ε �= 0 and D1 = 0, denote that �4 = B2 − 4Aε. Then,

the distribution of the equilibrium points of (1.2) is as

follows.

(1) When �4 < 0, (1.2) has only one equilibrium point

E0(0, 0).

(2) When �4 > 0, (1.2) has three equilibrium points E0(0,

0), E01(x01, 0) and E02(x02, 0), where x01 = ( − B +√
�4)/(2ε) and x02 = ( − B −

√
�4)/(2ε).

(3) When �4 = 0, (1.2) has two equilibrium points E0(0,

0) and E∗
01

(x∗
01

, 0), where x∗
01

= −B/(2ε) is a multiple

real root of f(x).

Let M(xe, 0) be the coefficient matrix of the linearized sys-

tem of (1.2) at an equilibrium point (xe, 0) and J(xe, 0) be its

Jacobin determinant. By the theory of planar dynamical sys-

tems, we know that for an equilibrium point of a planar in-

tegrable system, if J < 0 then the equilibrium point is a sad-

dle point; if J > 0 and Trace(M(xe, 0)) = 0 then it is a center

point; if J = 0 and the Poincare index of the equilibrium point

is 0 then it is a cusp. And from Eq. (1.3), we have

hi = H(xi, 0)(i = 1, 2, 3), h∗
i = H(x∗

i , 0)(i = 1, 2),

h0 = H(0, 0), h0i = H(x0i, 0)(i = 1, 2), h∗
01 = H(x∗

01, 0).

By using the above fact, we now consider bifurcations of

phase portraits of (1.2) for ε > 0 and ε < 0 respectively.

2.1. Phase portraits and bifurcation sets of Eq. (1.2) when ε > 0

2.1.1. Phase portraits and bifurcation sets of Eq. (1.2) when ε >

0 and D1 �= 0

When ε > 0 and D1 > 0, the bifurcation curve �3(B, A) =
0 is made up of three parts:

L±
11 : A = f ±

1 (B) = 1

12ε

(
B2 − B(B3 + 216D1ε

2)

2(δ2 + 24ε
√

−3D1δ1)1/3

±
√

3i

2
(δ2 + 24ε

√
−3D1δ1)

1/3

− B(B3 + 216D1ε2)

2(δ2 + 24ε
√

−3D1δ1)1/3

))

and

L12 : A = f2(B) = 1

12ε

(
B2 + (δ2 + 24ε

√
−3D1δ1)

1/3

+ B(B3 + 216D1ε
2)

(δ2 + 24ε
√

−3D1δ1)1/3

)
,

where δ1 = B9 − 81D1ε
2B6 + 2187D2

1ε
4B3 − 19683D3

1
ε6,

δ2 = B6 − 540D1ε
2B3 − 5832D2

1
ε4, L+

11
and L12 intersect

at the point B = 0, L−
11

and L12 intersect at the point B

which satisfies δ1 = 0. The bifurcation curve divides the (B,

A)—parameter plane into the two subregions (see Fig. 1):

Ia : {(B, A)|�3 > 0}, Ib : {(B, A)|�3 < 0}.
When ε > 0 and D1 < 0, the bifurcation curve �3(B, A) =

0 divides the (B, A)—parameter plane into the two subregions

(see Fig. 2):

IIa : {(B, A)|�3 > 0}, IIb : {(B, A)|�3 < 0},
where �3(B, A) = 0 is made up of three parts: L±

21
: A =

f ±
1
(B) and L22 : A = f2(B).

For ε > 0 and D1 �= 0, we have the bifurcations of phase

portraits of Eq. (1.2) shown in Fig. 3.
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