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a b s t r a c t

In this paper, we analyze the nonlinear dynamics of fractional order Duffing system. First, we

present the fractional order Duffing system and the numerical algorithm. Second, nonlinear

dynamic behaviors of Duffing system with a fixed fractional order is studied by using bifur-

cation diagrams, phase portraits, Poincare maps and time domain waveforms. The fractional

order Duffing system shows some interesting dynamical behaviors. Third, a series of Duff-

ing systems with different fractional orders are analyzed by using bifurcation diagrams. The

impacts of fractional orders on the tendency of dynamical motion, the periodic windows in

chaos, the bifurcation points and the distance between the first and the last bifurcation points

are respectively studied, in which some basic laws are discovered and summarized. This paper

reflects that the integer order system and the fractional order one have close relationship and

an integer order system is a special case of fractional order ones.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional calculus was proposed about three hundred

years ago. It has attracted many investigators [1–2]. Many

famous fractional order systems, such as Rōssler system,

Lorenz system, Chua’s circuit, Duffing system and so on,

have been studied [3–9]. In view of the fact that frac-

tional calculus provides another good way to describe, pre-

dict and control physical systems accurately, it has been

applied to control system, physics and system modeling

[10–14].

Duffing system has been applied in many fields, for ex-

ample, fluid flow induced vibration, large amplitude oscilla-

tion of centrifugal governor systems and mathematical mod-

eling and so on [15–17]. Perturbation methods and harmonic

balance methods are used to study Duffing system [18,19].

Fractional order Duffing system has been studied recently

[20-22]. Some researchers studied fractional damped Duff-

ing systems and found some new dynamic behaviors
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[23–26]. However, only few fractional orders are an-

alyzed and the basic laws haven’t been summarized

systematically.

Motivated by the above discussions, there are three novel

points in this paper, compared to the prior work. First, some

interesting dynamic behaviors as for example that the width

of period-three window is narrower than the period-five

window occur in the fractional order Duffing system. Sec-

ond, we innovatively study how the tendency of dynamic

motion varies with fractional order, how periodic windows

in chaos vary with fractional order, how the location of bi-

furcation points varies with fractional order and how the dis-

tance between the first bifurcation point and the last bifurca-

tion point varies with fractional order. Third, when fractional

order varies, the value of excitation frequency where the bi-

furcation occurs has minimum and the distance between the

first bifurcation point and the last bifurcation point has min-

imum. This is an important discovery.

This paper is organized as follows: Section 2 presents

the fractional order Duffing system. In Section 3, the non-

linear dynamic behaviors of fractional order Duffing sys-

tem are studied in detail and Section 4 concludes this

paper.
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2. Fractional order Duffing system

2.1. Definition of fractional derivative

There are three most frequently used for fractional deriva-

tive: Grunwald–Letnikov, Riemman–Liouville, and Caputo

definitions. The Caputo fractional derivative is used in this

paper, which is defined by:

aDq
t f (t) = 1

�(n − q)

∫ t

a

(t − τ)
n−q−1

f (n)(τ )dτ, (1)

in which n − 1 < q < n. Compared Caputo definition with

Grunwald–Letnikov and Riemman–Liouville, the most differ-

ence is that the initial conditions of the fractional differential

equations with Caputo derivatives take on the same form as

those for the integer order ones. It has physical meaning and

is very appropriate for practical problems [27]. Therefore, Ca-

puto derivative is applied to this paper.

2.2. Numerical algorithms

To solve a fractional differential equation, two methods,

which are the time domain approach and frequency do-

main approach [28–31], are mainly used. We use the Adams–

Bashforth–Moulton predictor–corrector scheme [31], a time

domain approach in this paper. For a fractional order system,

the time domain method is complicated and consumes a very

long simulation time, but it is more accurate [29].

The Adams–Bashforth–Moulton type predictor–corrector

scheme is based on the following fractional differential

equation:{
Dq

t y(t) = f (y(t), t),

y(k)(0) = yk
0, k = 0, 1, . . . , m − 1

, (2)

which is equivalent to the Volterra integral equation:

y(t) =
[q]−1∑
k=0

y(k)
0

tk

k!
+ 1

�(q)

∫ t

0

(t − τ )
q−1

f (τ, y(τ ))dτ. (3)

Discretizing the Volterra equation by setting tn = nh (n =
0, 1, . . . , N) and h = Tsim/N, we can obtain

yh(tn+1) =
m−1∑
k=0

tk
n+1

k!
y(k)

0
+ hq

�(α + 2)
f (tn+1, yp

h
(tn+1))

+ hq

�(α + 2)

n∑
j=0

aj,n+1 f (t j, yn(t j)), (4)

where

aj,n+1 =

⎧⎪⎨
⎪⎩

nq+1 − (n − q)(n + 1)
q
, j = 0,

(n − j + 2)
q+1 + (n − j)

q+1

+ 2(n − j + 1), 1 ≤ j ≤ n, .

1, j = n + 1.

(5)

The predictor y
p

h
(tn+1) is given by

yp

h
(tn+1) =

m−1∑
k=0

tk
n+1

k!
yk

0 + 1

�(q)

n∑
j=0

bj,n+1 f (t j, yn(t j)), (6)

in which

bj,n+1 = hq

q
((n + 1 − j)q − (n − j)q). (7)

The error estimate is

max
i=0,1,..., N

|y(ti) − yh(ti)| = O(hp),

in which p = min(2, 1 + q).

2.3. Fractional order Duffing system

The famous Duffing system is

m
d2

dt2
x(t) + c

d

dt
x(t) + kx(t) + ax3(t) = f sin (ωt), (8)

where m is the mass, c is the damping factor, k is the coeffi-

cient of linear rigidity, a is the coefficient of nonlinear stiff-

ness, f is the amplitude of the excitation and ω is the fre-

quency of the excitation.

Thus, the fractional order version of Duffing system is:⎧⎪⎨
⎪⎩

dαx

dαt
= y

dβy

dβt
= 1

m
( f sin (ωt) − ax3 − kx − cy),

(9)

where α and β are the fractional orders of the fractional or-

der Duffing system (0 < α, β < 2). In this paper, we use

the Adams–Bashforth–Moulton predictor–corrector scheme

to solve the fractional order Duffing equations and get the

numerical results.

In the following sections, we fix c = 0.9, f = 0.6, m = 1,

k = −1, a = 1 and let parameterω vary. Also the initial condi-

tions are x(0) = 0, y(0) = 0.

3. Nonlinear dynamic analysis of fractional order Duffing

system

We will study the nonlinear dynamic behaviors of the

above fractional order Duffing system in detail. In Section 3.1,

we will investigate the fractional order Duffing system with

α = 1.2 and β = 0.8. Moreover, a series of bifurcation dia-

grams are shown to discover and summarize the basic laws

of fractional order Duffing systems in Section 3.2.

3.1. Fractional order Duffing system with α = 1.2 and β = 0.8

In order to analyze the fractional order Duffing system,

the bifurcation diagram has been shown. Fig. 1(a) exhibits

the bifurcation diagram of x versus ω of fractional order Duff-

ing system on the interval 0.43 < ω < 1.22, with fractional

order α = 1.2 and β = 0.8.

As ω decreases from +∞ to 0.43, the fractional order Duff-

ing system goes through a cascade of period-doubling bifur-

cations to chaos, and it returns into single-periodic orbit from

chaos eventually.

For ω > 1.171, as shown in Fig. 1(a), the fractional order

Duffing system exhibits period-1 motion. The phase portrait

and Poincare map are depicted at ω = 1.2 in Fig. 1(b1) and

(b2), respectively. Clearly, the phase portrait is a universal

limit cycle; correspondingly, the Poincare map exhibits an

isolated point. The critical point of period-doubling bifurca-

tion is at ω = 1.171, where a pitchfork bifurcation emerges,

resulting in a transition of the phase portrait from a limit cy-

cle to a period-two limit cycle. From Fig. 1(c1) and (c2), the

period-two phase portrait and the Poincare map at ω = 1.11
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