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a b s t r a c t

We derive the upper bound of the irrationality exponent for a class of integer sequences with

an assumption on their generating functions. If their Hankel determinants are weakly non-

vanishing, then we prove that (2 log b − 2 log |a|)/( log b − 2 log |a|) is an upper bound of the

irrationality exponent, where a ∈ Z/{0} and b ∈ N satisfying gcd (a, b) = 1 and b > a2. On the

other hand, by the classical technique from Diophantine approximation and the structure of

generating function, we achieve an upper bound of the irrationality exponent for the 3-fold

Morse sequence, whose Hankel determinants are not well studied.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

For a real irrational number ξ , let us recall that the ir-

rationality exponent μ(ξ ) of ξ is the supremum of the real

numbers μ such that the inequality |ξ − p/q| < 1/qμ has in-

finitely many solutions (p, q) ∈ Z × N. We remark that the ir-

rationality exponent is also called the irrationality measure.

It is well-known that μ(ξ ) ≥ 2 for any irrational number ξ ,

and from Roth’s theorem [8], one deduces that μ(ξ) = 2 for

any algebraic irrational number.

For each integer sequence t = {ti}i�0, let us define its gen-

erating function T(t, x) as the following:

T(t, x) :=
∞∑

i=0

tix
i−1, 0 < |x| < 1.

For simplicity, we write T(x) instead of T(t, x) without danger

of confusion.
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In this paper, we will study the irrationality exponents for

the class of integer sequences t, whose generating functions

satisfy the following assumption A:

The generating function T(x) of the integer sequence t has

the form

T(x) = A(x)

B(x)
+ C(x)T(xk) (k ≥ 2)

for some A(x), B(x), C(x) ∈ Z[x]. As we will see, the

Thue–Morse sequence, paper-folding sequence, the Can-

tor sequence and the 3-fold Morse sequence satisfy the

assumption A.

The irrationality exponents of integer sequences have at-

tracted a great deal of attention recently. However, in gen-

eral, it is very difficult to determine the irrationality expo-

nents, even for their upper bounds. Recently, a few papers

on upper bounds of irrationality exponents for different se-

quences have been published, which are very important to

promote the study of the irrationality exponents. For ex-

ample, for the Thue–Morse sequence, Dubickas [4] in 2014

proved that its irrationality exponent μ(T(a/b)) does not ex-

ceed (2 log b − 2 log |a|)/( log b − 2 log |a|) for any coprime

nonzero integers a ∈ Z and b ∈ N satisfying b > a2. But even
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for the Thue–Morse, the value of the irrationality exponent is

known only for the special case a = ±1. In fact, Bugeaud [3] in

2011 proved that μ(T(1/b)) = 2, which improved the known

upper bound μ(T(1/b)) ≤ 4 obtained in 2009 [1]. Therefore,

for general integer sequences, it is worthy to derive the upper

bounds of irrationality exponents.

As mentioned above, the main goal of this paper is to give

an upper bound of the irrationality exponent of the generat-

ing function with the assumption A. For our purpose, two dif-

ferent methods will be introduced. One is the method based

on Hankel determinants and the other is the Diophantine ap-

proximation.

One of our targets is to present an upper bound of

the irrationality exponent μ(T(a/b)) under the weakly

non-vanishing property of Hankel determinants, see

Definition 2.1 and Theorem 2.4 for details. It is well known

that Hankel determinants of integer sequence are very im-

portant in the study of irrationality exponents. To review the

researches on Hankel determinants and their applications,

let us recall the definition of Hankel determinants according

to our goals. Let u = {uk}k�0 be a sequence of complex

numbers. Then the following (p, n)-order matrix U
p
n (u) is

called the Hankel matrix of u.

U p
n (u) =

⎡
⎢⎣

up up+1 · · · up+n−1

up+1 up+2 · · · up+n

· · · · · · · · · · · ·
up+n−1 up+n · · · up+2n−2

⎤
⎥⎦,

where n ∈ N and p = 0, 1, 2, . . . . The determinant of the ma-

trix U0
n (u) is called the Hankel determinant of the sequence

u and we denote it by Hn(u) in this paper. Allouche et al.

[2] showed that all the Hankel determinants of the Thue–

Morse sequence are nonzero, which implies that the Han-

kel determinants of the Thue–Morse sequence are weakly

non-vanishing. Therefore, we generalize one of the main re-

sults obtained by Dubickas in [4]. In addition, as we see in

Corollary 2.6, our result can also be applied to the paper-

folding sequence and the Cantor sequence. In fact, for any

nonzero integers a ∈ Z and b ∈ N with gcd (a, b) = 1 and b

> a2, we obtain the upper bound of irrationality exponents

for the paper-folding sequence and the Cantor sequence. For

the special case a = 1, they are studied recently in [5] and [9]

respectively. In fact, in 2014, Guo et al. [5] calculated the Han-

kel determinants of the regular paper-folding sequence and

obtained that the irrationality exponent of the regular paper-

folding number is equal to 2. Wen and Wu [9] obtained the

recurrence equations of the Hankel determinants associated

with the Cantor sequence, and then with the help of the Han-

kel determinants, they proved that the irrationality exponent

of the Cantor number is also equal to 2.

The other of our targets is to study the irrationality ex-

ponent relative to the 3-fold Morse sequence. Although Han-

kel determinants are widely studied and applied, there are

much more integer sequences whose Hankel determinants

have not been well studied. As we know, it seems that there

is no result on the Hankel determinants for the 3-fold Morse

sequence. Therefore, a different method is required for our

goal. In Section 3, using classical technique from Diophan-

tine approximation and the structure of generating function

of this sequence, we achieve an upper bound of irrationality

exponent of it.

This paper is organized as follows. In Section 2, we first

introduce some important and essential lemmas, and then

we estimate the upper bound of the irrationality exponent of

the integer sequence with weakly non-vanishing Hankel de-

terminants. In Section 3, we prove that the irrationality expo-

nent of the generating function relative to the 3-fold Morse

sequence is bounded from above by 6.

2. Upper bound for integer sequences with weakly

non-vanishing Hankel determinants

In this section, we mainly study the upper bound of

the irrationality exponent relative to the integer sequence t,

whose Hankel determinants are weakly non-vanishing, see

Definition 2.1 below for its meaning. As the preparations for

the proof of Theorem 2.4 below, let us first state some impor-

tant lemmas.

Lemma 2.1 (See [1]). Let ξ , δ, ρ and θ be real numbers such

that 0 < δ ≤ ρ and θ ≥ 1. Let us assume that there exists a se-

quence {pn/qn}n ≥ 1 of rational numbers and some positive con-

stants c0, c1 and c2 such that

(i) qn < qn+1 � c0qθ
n ;

(ii)
c1

q
1+ρ
n

� |ξ − pn

qn
| � c2

q1+δ
n

.

Then we have

μ(ξ) � (1 + ρ)θ/δ.

To formulate the next lemma and our main theorem pre-

cise, let us state the following definition.

Definition 2.1. Let Hn(t) denote the Hankel determinants of

the integer sequence t. We say that the Hankel determinants

Hn(t) are weakly non-vanishing if there exits an increasing

positive integer sequence {ni}i ≥ 0 such that for all i ≥ 0,

Hni
(t)Hni+1

(t) �= 0.

Lemma 2.2 (See [5]). Suppose the integer sequence t satis-

fies the assumption A and let deg (A(x)) = α, deg (B(x)) = β,

deg (C(x)) = γ . If further the Hankel determinants Hn(t) are

weakly non-vanishing, then for each l ∈ N and sufficiently large

m, there exist polynomials Pl,m(x) ∈ Z[x] of degrees at most

(α + β + γ + l)km, Ql,m(x) ∈ Z[x] of degrees at most (β +
l)km and some positive constants c3(l), c4(l) such that

c3(l)(xYl k
m

)ρl �
∣∣∣∣T(x) − Pl,m(x)

Ql,m(x)

∣∣∣∣
� c4(l)(xYl k

m

)δl , x ∈
(

0,
1

2

]
, (2.1)

where Yl = α + β + γ + l, ρl = (2l + γ )/Yl and δl = 2l/Yl .

Instead of the requirement that all the Hankel deter-

minants of integer sequence are nonzero, i.e. the non-

vanishing of Hankel determinants of integer sequence, the

above lemma only requires weakly non-vanishing property

of Hankel determinants Hn(t), which is very important for

our study in this section.

Lemma 2.3 (See [5]). Let L, k, m0 ≥ 2 be positive integers,

R := R(L) be a real number. Let B be any subset of integers

of [kL−1, kL − 1] satisfying [kL−1, kL − 1] ⊂ ⋃
x∈B[x − R, x + R].
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