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a b s t r a c t

Under the Black–Scholes model, the value of an American option solves a time dependent

variational inequality problem (VIP). In this paper, first we discretize the variational inequal-

ity of American option in temporal direction by applying the Rannacher time stepping and

achieve a sequence of elliptic variational inequalities. Second we discretize the spatial domain

of variational inequalities by using spectral element methods with high order Lagrangian poly-

nomials introduced on Gauss–Legendre–Lobatto points. Also by computing integrals by the

Gauss–Legendre–Lobatto quadrature rule we derive a sequence of the linear complementar-

ity problems (LCPs) having a positive definite sparse coefficient matrix. To find the unique

solutions of the LCPs, we use the projected successive over-relaxation (PSOR) algorithm. Fur-

thermore we present some existence and uniqueness theorems for the variational inequalities

and LCPs. Finally, theoretical results are verified on the relevant numerical examples.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Options are one of the most important types of finan-

cial instruments. Valuation of options has been a topic of re-

search for more than three decades [17,32]. Black and Scholes

proposed a model to transform the option pricing problem

into the task of solving a parabolic partial differential equa-

tion (PDE) with a final condition [5]. Under the Black–Scholes

model, price of an “American put” option must satisfy the

following PDE:

Pτ (S, τ ) + LBSP(S, τ ) = 0, S f (τ ) < S < ∞, 0 ≤ τ < T,

P(S, T) = h(S),

P(S f (τ ), τ ) = h(S),
∂P

∂S
(S f (τ ), τ ) = −1,

lim
S→∞

P(S, τ ) = 0, (1.1)

where h(S) = max{E − S, 0} and LBS is the Black–Scholes

partial differential operator introduced by
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LBSP(S, τ ) = 1

2
σ 2x2PSS(S, τ ) + rSPS(S, τ ) − rP(S, τ ).

In (1.1), P(S, τ ) denotes the price of option at time τ when

the spot price of underlying asset is S. The “strike price” E,

“volatility” σ , “interest rate” r and “time to maturity” T are all

positive constants. The final condition h(S) = max{E − S, 0}
is the value of option at time t = T and usually called the “pay

off” function. Eq. (1.1) is a parabolic PDE with free bound-

ary conditions. We need to find the solution P(S, τ ) and the

unknown “free boundary” Sf(τ ). It can be proven that the

“optimal exercise boundary” Sf(τ ) for American put options

is a monotonic non-decreasing function of τ , satisfying the

following expression (see [19])

Smin < S f (τ ) ≤ E, Smin = E

1 − 1
λ

,

λ = ρ −
√

ρ2 + 2r

σ 2
, ρ = −r + σ 2

2

σ 2
. (1.2)

In Fig. 1, we present the free boundary Sf(τ ) in the semi in-

finite domain of problem (1.1). Many problems in physics,

industry, finance, and other areas can be described by free
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Fig. 1. The semi infinite domain of the Black–Scholes equation and the op-

timal exercise boundary Sf(τ ). In the right hand side of Sf(τ ), the differential

equation is hold. In the left hand side of curve Sf(τ ), the solution P(S, τ ) co-

incides with the plane h(S) = max{E − S, 0}.

boundary problems. The theory of free boundary problems

is closely related to VIPs and LCPs which [8,10,11]. It is pos-

sible to formulate the free boundary problem (1.1) as a LCP

(see e.g. [9,27]). To this end we notice that if Sf(τ ) < S < ∞,

the first equation in (1.1) holds. For 0 ≤ S ≤ Sf(τ ), the solution

P(S, τ ) coincides with the plane h(S) = max{K − S, 0}. So we

have Pτ (S, τ ) + LBSP(S, τ ) = −rE < 0. In summary, on the en-

tire half strip, P(S, τ ) must satisfy an inequality of the Black–

Scholes type: Pτ (S, τ ) + LBSP(S, τ ) ≤ 0. Furthermore for fi-

nancial reasons [17], an American option can not have a value

that is smaller than the pay off function. Therefore in the

entire domain we have Pτ (S, τ ) ≥ h(S) (the equality is oc-

cur if and only if 0 ≤ S ≤ Sf(τ )). So in the entire domain we

have (P − h) = 0 or Pτ (S, τ ) + LBSP(S, τ ) = 0. In conclusion

Eq. (1.1) can be formulated as⎧⎪⎪⎨
⎪⎪⎩

Pτ (S, τ ) + LBSP(S, τ ) ≤ 0, (S, τ ) ∈ (0,∞) × (0, T),

Pτ (S, τ ) ≥ h(S),

(P − h)(Pτ (S, τ ) + LBSP(S, τ )) = 0,

P(0, τ ) = E, limS→∞ P(S, τ ) = 0.

(1.3)

Notice that the unknown boundary Sf(τ ) does not occur in

(1.3) explicitly and we have to find only the solution P(S,

τ ). The closed form solution to the problem (1.1) or (1.3)

does not exist and the solution has to be computed numer-

ically. So far a variety of numerical methods have been de-

veloped for solving the free boundary problem (1.1) and the

equivalent problem (1.3). For example, the finite difference

and finite element methods were proposed to solve (1.1) and

(1.3) [2,9,29,31]. A comparison of several numerical methods

for valuation American options is provided in [4]. The most

widely numerical technique used for pricing American op-

tions is the “binomial method” proposed by Cox et al. [7]. A

comprehensive algorithmic description and implementation

of binomial method were given in [15].

In this paper, we discretize (1.1) by spectral element

methods proposed by [25]. Spectral element methods com-

bine the Galerkin spectral methods with finite element

methods by applying the spectral method per element. The

basis functions in this method usually are Lagrangian poly-

nomials introduced on Gauss–Legendre–Lobatto points. Per-

forming Gauss–Legendre–Lobatto integration rule leads to a

diagonal mass matrix which decreases the cost of computa-

tions. The spectral element methods recently have been ap-

plied to solve a wide range of problems in science and engi-

neering (see [20,22,23,28]).

The remainder of this paper is organized as follows. In

Section 2, we review some definitions, properties and the-

orems for variational inequalities and LCPs. We investigate

the one dimensional obstacle problem as a simple example of

variational inequalities in Section 3. In Section 4, we formu-

late problem (1.3) as an VIP, then we approximate the unique

solution of the problem by using spectral element methods.

We give two illustrative examples to demonstrate the valid-

ity and applicability of the proposed methods in Section 5.

Section 6 consists of a brief conclusion.

2. Variational inequality problems

Many mathematical problems can be formulated as VIPs

introduced by Hartman and Stampacchia [14]. In this section

we review some properties of variational inequalities and

LCPs in the Hilbert spaces.

2.1. Variational inequality problems in the Hilbert spaces

Suppose that V is a Hilbert space with scalar product (., .)

and associated norm ‖.‖V. Let

• a(., .) : V × V → R be a bilinear form on V × V, that is con-

tinuous i.e. there exists a constant C such that |a(u, v)|

≤ C‖u‖V‖v‖V, ∀u, v ∈ V.

• L : V → R be a continuous linear functional,

• K be a closed convex nonempty subset of V.

A variational inequality problem in Hilbert space V can be

presented as the following problem:

Problem. (Variational inequality problem in Hilbert

spaces)

Find u ∈ K such that a(u, v − u) ≥ L(u, v − u),

∀v ∈ K. (2.1)

The following theorem is a generalizations of the

Lax–Milgram theorem and provides a sufficient condi-

tion for existence and uniqueness of problem (2.1) (see

[13, Theorem 3.1]).

Theorem 2.1 (Stampaccia). Let a(., .) be coercive i.e. there

exists a positive constant α such that

a(v, v) ≥ α‖v‖2, ∀v ∈ V,

then problem (2.1) has a unique solution.

Remark 2.2. Let the bilinear form a(u, v) be an inner prod-

uct such that its induced norm be equivalent to ‖.‖V. Then

it is easy to see that a(., .) is continuous and coercive, so the

problem (2.1) has a unique solution.

2.2. Variational inequalities and LCPs in the finite dimensional

Euclidian spaces

Discretization of variational inequality problem (2.1)

leads to a variational inequality in a finite dimensional

Euclidian space.
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