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1. Introduction LpsP(S.T) = %szzPss(S, )+ 1SP(S, T) — IP(S, 7).

Options are one of the most important types of finan-
cial instruments. Valuation of options has been a topic of re-
search for more than three decades [17,32]. Black and Scholes
proposed a model to transform the option pricing problem
into the task of solving a parabolic partial differential equa-
tion (PDE) with a final condition [5]. Under the Black-Scholes
model, price of an “American put” option must satisfy the

In (1.1), P(S, T) denotes the price of option at time T when
the spot price of underlying asset is S. The “strike price” E,
“volatility” o, “interest rate” r and “time to maturity” T are all
positive constants. The final condition h(S) = max{E — S, 0}
is the value of option at time t = T and usually called the “pay
off” function. Eq. (1.1) is a parabolic PDE with free bound-
ary conditions. We need to find the solution P(S, 7) and the

following PDE: unknown “free boundary” S{t). It can be proven that the
Pr(S,T) 4+ LpsP(5,7) =0, Sp(r) <S<o0, O0<7<T, “optimal exercise boundary” S{t) for American put options
P(S,T) = h(S), is a monotonic non-decreasing function of t, satisfying the
9P following expression (see [19])
P(S;(). T) =h(S), 55(5(1). 1) =1, E
Smin <S¢(t) <E, Spin=—.
lim P(S,7) = 0, (11) min < $;(7) < £ S 1-1
where h(S) = max{E —S,0} and Lps is the Black-Scholes A=p—.] o+ ﬁ 0= —T+ 072 (1.2)
partial differential operator introduced by N o2’ T o2 7 ’
In Fig. 1, we present the free boundary S{7) in the semi in-
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Fig. 1. The semi infinite domain of the Black-Scholes equation and the op-
timal exercise boundary S¢(7). In the right hand side of S{(7 ), the differential
equation is hold. In the left hand side of curve S{(z), the solution P(S, ) co-
incides with the plane h(S) = max{E — S, 0}.

boundary problems. The theory of free boundary problems
is closely related to VIPs and LCPs which [8,10,11]. It is pos-
sible to formulate the free boundary problem (1.1) as a LCP
(see e.g. [9,27]). To this end we notice that if S{7) < S < oo,
the first equation in (1.1) holds. For 0 < S < S{7), the solution
P(S, T) coincides with the plane h(S) = max{K — S, 0}. So we
have P; (S, T) + LpsP(S, T) = —rE < 0.In summary, on the en-
tire half strip, P(S, T) must satisfy an inequality of the Black-
Scholes type: P; (S, T) + LpsP(S, T) < 0. Furthermore for fi-
nancial reasons [17], an American option can not have a value
that is smaller than the pay off function. Therefore in the
entire domain we have P.(S, t) > h(S) (the equality is oc-
cur if and only if 0 < S < S{7)). So in the entire domain we
have (P—h) =0 or P, (S, 7) + LpsP(S, ) = 0. In conclusion
Eq. (1.1) can be formulated as

P.(S,T) + LpsP(S,7) <0, (S, 7)€ (0,00) x (0,T),
P (S, 7) = h(S),

(P—h)(P:(S.T) 4+ LpsP(S. 7)) =0,

P(0,7) =E, lims..P(S, 7)=0.

(1.3)

Notice that the unknown boundary S{7) does not occur in
(1.3) explicitly and we have to find only the solution P(S,
7). The closed form solution to the problem (1.1) or (1.3)
does not exist and the solution has to be computed numer-
ically. So far a variety of numerical methods have been de-
veloped for solving the free boundary problem (1.1) and the
equivalent problem (1.3). For example, the finite difference
and finite element methods were proposed to solve (1.1) and
(1.3)[2,9,29,31]. A comparison of several numerical methods
for valuation American options is provided in [4]. The most
widely numerical technique used for pricing American op-
tions is the “binomial method” proposed by Cox et al. [7]. A
comprehensive algorithmic description and implementation
of binomial method were given in [15].

In this paper, we discretize (1.1) by spectral element
methods proposed by [25]. Spectral element methods com-
bine the Galerkin spectral methods with finite element
methods by applying the spectral method per element. The
basis functions in this method usually are Lagrangian poly-
nomials introduced on Gauss-Legendre-Lobatto points. Per-
forming Gauss-Legendre-Lobatto integration rule leads to a
diagonal mass matrix which decreases the cost of computa-
tions. The spectral element methods recently have been ap-

plied to solve a wide range of problems in science and engi-
neering (see [20,22,23,28]).

The remainder of this paper is organized as follows. In
Section 2, we review some definitions, properties and the-
orems for variational inequalities and LCPs. We investigate
the one dimensional obstacle problem as a simple example of
variational inequalities in Section 3. In Section 4, we formu-
late problem (1.3) as an VIP, then we approximate the unique
solution of the problem by using spectral element methods.
We give two illustrative examples to demonstrate the valid-
ity and applicability of the proposed methods in Section 5.
Section 6 consists of a brief conclusion.

2. Variational inequality problems

Many mathematical problems can be formulated as VIPs
introduced by Hartman and Stampacchia [14]. In this section
we review some properties of variational inequalities and
LCPs in the Hilbert spaces.

2.1. Variational inequality problems in the Hilbert spaces

Suppose that V is a Hilbert space with scalar product (., .)
and associated norm |.||y. Let

«a(.,.):V xV — Rbeabilinear formon V x V, that is con-
tinuous i.e. there exists a constant C such that |a(u, v)|
= Cllullviivlly, Vu,veV.

« L:V — Rbe acontinuous linear functional,

« K be a closed convex nonempty subset of V.

A variational inequality problem in Hilbert space V can be
presented as the following problem:

Problem. (Variational inequality problem in Hilbert
spaces)

Findu e K suchthat a(u,v—u)>L(u,v—u),
Yvek. (2.1)

The following theorem is a generalizations of the
Lax-Milgram theorem and provides a sufficient condi-
tion for existence and uniqueness of problem (2.1) (see
[13, Theorem 3.1]).

Theorem 2.1 (Stampaccia). Let a(., .) be coercive i.e. there
exists a positive constant « such that

aw,v) = a|v||?>, YveV,
then problem (2.1) has a unique solution.

Remark 2.2. Let the bilinear form a(u, v) be an inner prod-
uct such that its induced norm be equivalent to ||.||y. Then
it is easy to see that a(., .) is continuous and coercive, so the
problem (2.1) has a unique solution.

2.2. Variational inequalities and LCPs in the finite dimensional
Euclidian spaces

Discretization of variational inequality problem (2.1)
leads to a variational inequality in a finite dimensional
Euclidian space.
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