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This paper is concerned with a predator-prey-parasite model with nonlinear infection rate
and incubation delay. To explore the system dynamics, we study the distribution of roots of
the characteristic equation of the Jacobian matrix of the system which has delay-dependent
coefficients. The dynamics displayed by the system can exhibit some of the key features ob-
served in the natural systems, such as appearance and disappearance of cycles in succession.
It is shown that the switching phenomenon between stable coexistence and oscillatory coex-
istence of interior equilibrium as well as of predator-free equilibrium is an interplay of three
system parameters, viz. the crowding coefficient, the prey consumption rate and the length of
incubation delay. We also discuss the stability of the delayed-system when the non-delayed

system is assumed to be unstable.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent times, theoretical biologists are paying more in-
terest to study ecoepidemiological models which integrate
an epidemic model with a predator-prey model [1]. This is
due to the fact that parasites have the ability to alter the
quantitative dynamics of their host population and can even
send host population to extinction in the worst case. Preda-
tors, on the other hand, can greatly influence the popu-
lation dynamics of hosts and parasites by consuming host
population [2].

One of the most important task in epidemic models to ex-
press the disease transmission term mathematically. In most
epidemic models, it is assumed that spread of disease oc-
curs following the law of mass action. If S(t) and I(t) are the
densities of susceptible and infectious populations at time t
then, following mass action law, the rate of new infections
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(or incidence rate) at any time ¢ is defined by B(t) = Ag(I)S
with g(I) = I. The proportionality constant A is called dis-
ease transmission coefficient. This mass action law (or bilin-
ear law) has some unrealistic features, viz., the function g(I)
becomes unbounded when [ is large [3]. Liu et al. [4] argued
for nonlinear incidence rate and proposed a saturated non-
linear function for g(I), viz. g(I) = % where p, q are posi-
tive constants and b is a nonnegative constant. Here AP mea-
sures the infection force of the disease and Hﬁ measures
the inhibition effect from the behavioral change of the infec-
tious individuals when their number increases, or from the
crowding effect of the infectious individuals. Thus, the inci-
dence rate takes the form B(t) = A% . Assuming p = 1 and
q =1, Capasso and Serio [5] studied the cholera epidemic
with B(t) = % It is worth mentioning that crowding ef-
fect is negligible when I is small and the two infection rates,
in this case, become equivalent. Later on many other authors
[4-7] considered this incidence rate to study the dynamics of
different epidemic models.

Different models were proposed and investigated for
predator-prey interaction in presence of infection and delay.
Sun et al. [8] introduced predator’s reproduction delay in the

ecoepidemiological model of Chattopadhyay and Arino [9]
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and studied the model
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where the state variables S, I and P represent, respectively,
the susceptible prey, infectious prey and predator densities
at time t. The model assumes that the prey population grows
logistically with intrinsic growth rate r and carrying capacity
K. Infection spreads from infectious prey to susceptible prey
by contact following mass action law with A as the disease
transmission coefficient. Infected populations unable to re-
produce but contribute to carrying capacity. It is a general
observation that infected preys are more susceptible to pre-
dation as they are weakened due to infection and cannot es-
cape predation easily [10]. In their field experiments, Lafferty
and Morris [11] estimated that parasitized fish are 31 times
more vulnerable to predation than non-parasitized fish. It
was assumed, therefore, predator consumes infectious prey
only following Type I response function with attack rate m.
Death rates of infectious prey and predator populations are
represented by 1 and c, respectively. The parameter « (0 <
o < 1) represents the conversion efficiency of predator and
T > 0is the predator’s reproduction delay. All parameters are
assumed to be positive. Bairagi [12] replaced the predation
term mIP by more realistic Holling Type Il form gl—f,’ a being
the half-saturation constant, and studied the local stability of
the ecoepidemic model
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In an another study, Bairagi et al. [ 13] considered the delay in
the disease transmission term and investigated the model
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The common observation of these delay-induced models is
that stability switch and the Hopf bifurcation occurs when
delay crosses some threshold value. All these models assume
that disease spreads from infectious prey to susceptible prey
following mass action or bilinear law. However, there are
valid reasons for considering incidence rate as nonlinear in-
stead of bilinear [14]. Mass action law does not saturate and
becomes unbounded when I becomes large. It also does not
consider the inhibition effect from the behavioral change of
the susceptible individuals or from the crowding effect of
the infectious individuals [5]. We, therefore, replace the bi-
linear disease transmission term ASI in (3) by the nonlinear
term 5. Note that it includes the crowding effect of the in-
fectious individuals and prevents the unboundedness of the
contact rate for positive b.

Here we extend the ecoepidemiological model (3) with
nonlinear incidence and incubation delay. To incorporate the
intracellular phase of pathogen’s life-cycle, we assume that
the newly infected prey becomes productively infectious af-
ter the effective contact between susceptible and infectious
preys by a constant delay . The recruitment of actively infec-
tious preys at time t is then given by the number of preys that
were newly infected at time t — t and are still alive at time t.
If we assume a constant death rate § for infected prey but
not yet infectious, the probability of surviving the time pe-
riod from t — 7 to t is e=A7. The system (3) in this case reads
as
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We show that the predator-prey-parasite system (4) with
saturated nonlinear incidence rate and incubation delay can
exhibit stable and cyclic behavior in succession.

The paper is arranged as follows. We present some pre-
liminary results and existence of equilibrium points in the
next section. Stability analysis of the system is performed in
Section 3. Permanence of the system is shown in Section 4.
Section 5 is devoted for extensive numerical computations.
Finally, a summary is presented in Section 6.

2. Preliminary results

We first show that the delay-induced system (4) is well-
posed with some initial conditions. Let C = C([-, 0], R3) be
the Banach space of continuous functions, mapping the in-
terval [-7, 0] into R3 with norm

where ¢ = (¢1, ¢, ¢3). The initial conditions of the model
(4) are given by

S(0) = ¢1(0) > 0,1(0) = $2(0) > 0,

P(O) = ¢p3(0) > 0,0 ¢ [-7,0], (5)

where (¢1(0), ¢,(0), ¢3(0)) € C. Following fundamental the-
ory of functional differential equations [15], the system (4)
has a unique solution with initial conditions (5).

We now show that solutions of the system (4) are positive
for all t > 0. From the first equation of (4), we have
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Again, the third equation of (4) gives

(6)
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It implies that S(t) > 0 and P(t) > O for all t > 0 whenever
5(0) > 0 and P(0) > 0. We also claim that I(t) > O for all t >
0. If not, then there exists t; > 0 and € > 0 such that I(t;) > 0
fort < ty,I(t) =0fort =ty and I(t) < O whent € [t1,t; +€).
From the second equation of (4), we have



Download English Version:

hitps://daneshyari.com/en/article/10732775

Download Persian Version:

https://daneshyari.com/article/10732775

Daneshyari.com


https://daneshyari.com/en/article/10732775
https://daneshyari.com/article/10732775
https://daneshyari.com

