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a b s t r a c t

We present a general approach to the analysis of the susceptible-infected-susceptible model

with effective contacts on networks, where each susceptible node will be infected with a cer-

tain probability only for effective contacts. In the network, each node has a given effective con-

tact number. By using the one-vertex heterogenous mean-field (HMF) approximation and the

pair HMF approximation, we obtain conditions for epidemic outbreak on degree-uncorrelated

networks. Our results suggest that the epidemic threshold is closely related to the effective

contact and its distribution. However, when the effective contact is only dependent of node

degree, the epidemic threshold can be established by the degree distribution of networks.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The study of epidemic spreading through networks has

drawn a wide attention of researchers in mathematical,

physical and biological communities. In order to understand

how the structure of interactions influences the spread of

an infectious disease, Pastor-Satorras and Vespignani [1]

developed a heterogenous mean-field approximation (HMF)

approach. According to the HMF theory, many dynamical

transmission processes can be mapped into a coupled

ordinary differential equations. For instance, the susceptible-

infected-susceptible (SIS) model on degree-uncorrelated

network with the degree distribution p(k) is given by

dρk

dt
= −ρk(t) + βk(1 − ρk(t))

∑
k′ k′ p(k′)ρk′(t)

〈k〉 .

Here, ρk(t) represent the densities of infected nodes at time

t in the population with degree k, β is the infection rate and

the notation 〈f(k)〉 means the expectation of f with respect

to the degree distribution.
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Considering the limited activity of infected nodes, Zhou

et al. [2] proposed a constant infectivity m for each individ-

ual, that means each infected individual will generate m con-

tacts at each time step. Furthermore, Yang et al. [3] studied

the susceptible-infected-removed (SIR) model with identical

infectivity. They found that the epidemic threshold βc = 1/m.

Along this way, Fu et al. [4] analyzed an SIS model with piece-

wise linear infectivity φ(k) as a piecewise linear function of

node degree k. At this time, βc = 〈k〉
〈kφ(k)〉 .

On the other hand, considering the contact effectiveness

of susceptible nodes, Li et al. [5] studied an SIR model with ef-

fective contacts in homogeneous or heterogeneous networks.

They introduced an effective contact function ϕ(k) with re-

spect to degree k, and obtained βc = 〈k〉
〈kϕ(k)〉 with the same

form as the model with saturated infectivity.

Regardless of introducing φ(k) and ϕ(k), all these re-

searches stress the potential existence of the epidemic

threshold even in the scale-free network. This point im-

proves our understanding of epidemic dynamics in complex

networks. However, we should consider the infectivity and

effective contact together for all the nodes. As a unified

viewpoint, the infectivity or effective contact is referred to

here as the effective degree (this is different from Refs.[6–8]),
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Fig. 1. Effective contact between two nodes. Node A (B) has k original con-

tacts where only l contacts (solid and thick) are effective and other k − l con-

tacts (dashed and thin) are ineffective.

denoted by l. While, the usual degree is also called the orig-

inal degree, denoted by k. In Fig. 1, we illustrate an effective

link between two nodes. In this sense, 0 ≤ l ≤ k. Taking the

SIS model as an example, not only each susceptible node

has its effective contact, but also each infected node has its

effective contact. When l is degree-dependent, l = ϕ(k) for

susceptible nodes and l = φ(k) for infected nodes.

In this paper, we focus on the impact of effective con-

tact on epidemic spreading. Since the infection can arise only

along the effective contact, the previous approach based on

the original degree k is not plausible. Here we introduce

an effective approach to this problem which allows for a

straightforward generalization of traditional HMF approach

on degree-uncorrelated networks. In addition, the epidemic

thresholds are explicitly obtained by one-vertex and pair

HMF approximation.

2. An analysis framework

The epidemic model used here is SIS. The SIS epidemic

model can be adapted for a class of infectious diseases such

as gonorrhea, in which infected individuals can be recovered,

but may be infected again [1,4]. In the SIS model, each node

may stay in either susceptible (S) state or infected (I) state.

At each time step, each infected node transmits the infection

to its each susceptible neighbor with rate β (i.e., the infec-

tion rate ) and meanwhile is recovered and become suscepti-

ble again with rate μ (i.e., the recovery rate). Without less of

generality, we set μ = 1.

For the convenience of mathematical analysis and in ac-

cordance to realistic cases, we assume that the network has a

finite size N [9], which determines a maximal degree M. We

still denote the degree distribution of the original network by

p(k), the probability that a node chosen uniformly at random

has degree k. The notation p(k′|k) represents the probability

of a given node of degree k pointing to a node of degree k′.
In order to build the mean-field rate equations, we divide

all the nodes into many classes according to their degrees and

their epidemiological states. Unlike the classic heterogenous

mean-field model, the degree class consists of not only the

original degree but also the effective degree. Here, we use

notation (k, l) to denote a class of nodes with the original de-

gree k and the effective degree l (0 ≤ l ≤ k) and call it the

node degree for simplicity, which follows the joint probabil-

ity distribution p(k, l). Then, the respective marginal proba-

bility distribution of the original degree and effective degree

reads as

p(k, ·) =
k∑

l=0

p(k, l), p(·, l) =
M∑

k=l

p(k, l).

Clearly, we have p(k, ·) = p(k). Moreover, the n order mo-

ment of the joint probability p(k, l) can be written as

〈kn〉 =
∑
k,l

kn p(k, l) =
M∑

k=1

kn
k∑

l=0

p(k, l) =
M∑

k=1

kn p(k, ·),

and

〈ln〉 =
∑
k,l

ln p(k, l) =
M∑

l=0

ln
M∑

k=l

p(k, l) =
M∑

l=0

ln p(·, l).

We also define some conditional probabilities. p(l|k) de-

notes the probability that a given node of degree k has l effec-

tive contacts. Similarly, p(k|l) stands for the probability that a

given node with l effective contacts is of degree k. And p(k′,
l′|k, l) means the probability that a randomly chosen link em-

anated from a given node of degree (k, l) leads to a node of

degree (k′, l′).
Let ρk, l(t) represents the probability that a node with de-

gree (k, l) is in the infected state. Then the SIS model with

effective contacts on networks can be described by the fol-

lowing ordinary differential equations [10]:

dρ(k,l)

dt
= −ρ(k,l) + β l

∑
k′,l′

φ(k,l)(k′,l′) p(k′, l′|k, l), (1)

where φ(k,l)(k′,l′) denotes the probability that a node of de-

gree (k, l) is connected to a node of degree (k′, l′). It is easy to

get that φ(k,l)(k′,l′) = 0 for l = 0 or l′ = 0.

Model (1) is not a closed system and cannot be directly

analyzed. However, one can close it by some approximation

techniques [10,11]. For the sake of the following analysis, we

first give some useful notations [10]: [A(k, l)] is the probability

that a node with degree (k, l) is in state A; [A(k,l)B(k′,l′)] is the

probability that a node of degree (k, l) in state A is connected

by the effective link to a node of degree (k′, l′) in state B;

[A(k,l)B(k′,l′)C(k′′,l′′)] is the generalization to three nodes such

that the pairs [A(k,l)B(k′,l′)] and [B(k′,l′)C(k′′,l′′)] are connected

through a node of degree (k′, l′) and so forth.

Furthermore, an infected state is represented by 1 and

a susceptible one by 0. So, [1(k,l)] = ρ(k,l) and φ(k,l)(k′,l′) =
[0(k,l)1(k′,l′)].

3. The one-vertex HMF approximation

3.1. The model

We firstly consider the one-vertex mean-field approxi-

mation, i.e., φ(k,l)(k′,l′) = (1 − ρ(k,l))ρ(k′,l′), then model (1)

becomes

dρ(k,l)

dt
= −ρ(k,l) + β l(1 − ρ(k,l))

∑
k′,l′

ρ(k′,l′) p(k′, l′|k, l) (2)
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