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a b s t r a c t

In this paper, we present a family of Implicit Adams Methods (IAMs) for the numerical ap-

proximation of Fractional Initial Value Problems (FIVP) with derivatives of the Caputo type. A

continuous representation of the k-step IAM is developed via the interpolation and collocation

techniques and adapted to cope with the integration of FIVP. This is achieved by combining the

k-step IAM with (k − 1) additional methods obtained from the same continuous scheme and

applying them as numerical integrators in a block-by-block fashion. We also investigate the

stability properties of the block methods and the regions of absolute stability of the meth-

ods are plotted in the complex plane. The block methods are tested on numerical examples

including large systems resulting from the semi-discretization of one-dimensional fractional

heat-like partial differential equations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional differential equations (FDEs) arise in the math-

ematical modelling of several physical phenomena and play

an important role in various branches of science and engi-

neering. Applications of FDEs are found in chemistry, elec-

tronics, circuit theory, seismology, signal processing, control

theory and so on. Also, these FDEs serve as a generalization of

their corresponding ordinary differential equations (ODEs).

For a brief history and introduction to fractional calculus, we

refer the reader to [15–17].

In what follows, we consider the FIVP in the form

cDα
x0

y(x) = f (x, y(x))

y(x0) = y0 (1)

where 0 < α < 1 is the fractional order and cDα
x0

(in the se-

quel we shall simply use Dα) denotes the Caputo α derivative
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operator which is defined as

Dαy(x) = 1

�(1 − α)

∫ x

x0

(x − s)−αy′(s)ds (2)

We have adopted the Caputo’s definition of derivatives of

non integer order (which is a modification of the Riemann–

Liouville definition) since it can be coupled with initial condi-

tions having a clear physical meaning. The existence and the

uniqueness of the solution of (1) has been given in Deithelm

and Ford [2].

Due to the occurrence of FDEs in several models, there

have been an increasing attention for the development of

effective and well suited methods for this class of impor-

tant problems. Several methods have been proposed and

analysed for the numerical approximation of FDEs (See Lu-

bich [11–13] , Garrapa [7], Galeone and Garrapa [6,8,9],

Diethelm et al. [3,4] and the references therein). These

authors have independently developed Fractional Linear

Multistep Methods (FLMMs) using convolution quadra-

tures. Diethelm et al. [3,4] used the rectangle rule and
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the two-point trapezoidal quadrature formula to derive ex-

plicit one-step Adams–Bashforth method and implicit one-

step Adams–Moulton method, respectively with the former

method serving as a predictor for the later. Lubich [12] also

proposed formulas of the form

yn = f (tn) + hα
n∑

j=0

ω(α)
n− j

g(t j, yj) + hα
m∑

j=0

ωn jg(t j, yj),

nh ∈ I (3)

where ωα
n and ωnj are the convolution and starting quadra-

ture weights respectively and are independent of the step

size h.

One major difficulty in the FLMMs (3) is in evaluating the

convolution weights ωα
n . Most of the methods rely on the

J.C.P Miller formula for the computation of these weights. In

order to avoid this major drawback, we give a different ap-

proach in the construction of the FLMMs. This approach is

based on interpolation and collocation as was discussed by

Onumanyi et al. [18].

The paper is organized as follows: In Section 2, we discuss

the development of the Fractional Adams Moulton’s Method.

Section 3 details the stability properties and implementation

of the methods. In Section 4, we give five test problems to

elucidate our theoretical results. Finally, we give some con-

cluding remarks in Section 5.

2. Fractional Adams Moulton’s methods

In this section, we shall construct a k-step Continuous

Fractional Adams Moulton’s Methods (CFAMM) which will

be used to obtain the discrete Fractional Adams Moulton’s

Methods (FAMM). The CFAMM has the general form

U(x) = γk−1(x)yn+k−1 + hα
k∑

j=0

β j(x) fn+ j (4)

where γk−1(x), β j(x) are continuous coefficients. We assume

that yn+ j = U(xn + jh) is the numerical approximation to the

analytical solution y(xn+ j) and fn+ j = DαU(xn + jh) is an ap-

proximation to Dαy(xn+ j). The CFAMM is constructed from

its equivalent form by requiring that the exact solution y(x)

is locally approximated by the function (4) on the interval

[xn, xn+k].

Theorem 2.1. Let (4) satisfy the following conditions

U(xn+k−1) = yn+k−1

DαU(xn+ j) = fn+ j, j = 0(1)(k) (5)

then the continuous representation (4) is equivalent to

U(x) =
k∑

j=0

det(Vj)

det(V)
Pj(x) (6)

where we define the matrix V as

V =

⎛
⎜⎜⎜⎜⎜⎝

P0(xn+k−1) · · · Pk(xn+k−1)

DαP0(xn) · · · DαPk(xn)

DαP0(xn+1) · · · DαPk(xn+1)
...

...
...

DαP0(xn+k) · · · DαPk(xn+k)

⎞
⎟⎟⎟⎟⎟⎠,

Vj is obtained by replacing the jth column of V by W where T

denotes the transpose, Pj(x) = x j, j = 0(1)k are basis functions

and W is a vector given by

W = (yn+k−1, fn, fn+1, . . . , fn+k)
T .

Proof. We require that the method (4) be defined by the as-

sumed polynomial basis functions

γk−1(x) =
k∑

i=0

γi+1,k−1Pi(x)

hαβ j(x) =
k∑

i=0

hαβi+1, jPi(x), j = 0(1)k (7)

where γi+1,k−1, hαβi+1, j are coefficients to be determined.

Substituting (7) into (4), we have

U(x) =
k∑

i=0

γi+1,k−1Pi(x)yn+k−1 +
k∑

j=0

k∑
i=0

hαβi+1, jPi(x) fn+ j

which may be written as

U(x) =
k∑

i=0

{
γi+1,k−1yn+k−1 +

k∑
j=0

hαβi+1, j fn+ j

}
Pi(x)

and expressed as

U(x) =
k∑

i=0

τiPi(x) (8)

where

τi = γi+1,k−1yn+k−1 +
k∑

j=0

hαβi+1, j fn+ j

By imposing condition (5) on (8), we obtain a system of

(k + 1) equations, which can be expressed as V = LW where

L = (τ0, τ1, . . . , τk)
T is a vector of (k + 1) undetermined coef-

ficients. Using Crammer’s rule, the elements of L can be ob-

tained and are given by

τi = det(Vj)

det(V)
, j = 0(1)k

where Vj is obtained by replacing the jth column of V by W.

We rewrite (8) using the newly found elements of L as

U(x) =
k∑

j=0

det(Vj)

det(V)
Pj(x) (9)

�

Remark 2.2. The continuous scheme (4) which is equivalent

to (6) is evaluated at xn+k to obtain the k-step FAMM of the

form

yn+k − yn+k−1 = hα
k∑

j=0

β j fn+ j (10)

Also, we emphasize that the continuous scheme (6) is evalu-

ated at xn+i, i = 0(1)(k − 2) to obtain
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