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In this paper, we present a family of Implicit Adams Methods (IAMs) for the numerical ap-
proximation of Fractional Initial Value Problems (FIVP) with derivatives of the Caputo type. A
continuous representation of the k-step IAM is developed via the interpolation and collocation

techniques and adapted to cope with the integration of FIVP. This is achieved by combining the

MSC: k-step IAM with (k — 1) additional methods obtained from the same continuous scheme and
26A33 applying them as numerical integrators in a block-by-block fashion. We also investigate the
65L06 stability properties of the block methods and the regions of absolute stability of the meth-
65L20 ods are plotted in the complex plane. The block methods are tested on numerical examples

including large systems resulting from the semi-discretization of one-dimensional fractional
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1. Introduction

Fractional differential equations (FDEs) arise in the math-
ematical modelling of several physical phenomena and play
an important role in various branches of science and engi-
neering. Applications of FDEs are found in chemistry, elec-
tronics, circuit theory, seismology, signal processing, control
theory and so on. Also, these FDEs serve as a generalization of
their corresponding ordinary differential equations (ODEs).
For a brief history and introduction to fractional calculus, we
refer the reader to [15-17].

In what follows, we consider the FIVP in the form

D yx) = f(x,y(x))
y(x0) = Yo (1

where 0 < « < 1 is the fractional order and CD,‘{O (in the se-
quel we shall simply use D%) denotes the Caputo « derivative
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operator which is defined as

o _ l /X —0,,/
YW = gy [, (Vs @)

We have adopted the Caputo’s definition of derivatives of
non integer order (which is a modification of the Riemann-
Liouville definition) since it can be coupled with initial condi-
tions having a clear physical meaning. The existence and the
uniqueness of the solution of (1) has been given in Deithelm
and Ford [2].

Due to the occurrence of FDEs in several models, there
have been an increasing attention for the development of
effective and well suited methods for this class of impor-
tant problems. Several methods have been proposed and
analysed for the numerical approximation of FDEs (See Lu-
bich [11-13] , Garrapa [7], Galeone and Garrapa [6,8,9],
Diethelm et al. [3,4] and the references therein). These
authors have independently developed Fractional Linear
Multistep Methods (FLMMs) using convolution quadra-
tures. Diethelm et al. [3,4] used the rectangle rule and
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the two-point trapezoidal quadrature formula to derive ex-
plicit one-step Adams-Bashforth method and implicit one-
step Adams-Moulton method, respectively with the former
method serving as a predictor for the later. Lubich [12] also
proposed formulas of the form

Yn = f(ta) +h* Zw“”g(t, i)+ h* an,g(tj ).
j=0

nhel (3)

where @ and w,; are the convolution and starting quadra-
ture weights respectively and are independent of the step
size h.

One major difficulty in the FLMMs (3) is in evaluating the
convolution weights wjy. Most of the methods rely on the
J.C.P Miller formula for the computation of these weights. In
order to avoid this major drawback, we give a different ap-
proach in the construction of the FLMMSs. This approach is
based on interpolation and collocation as was discussed by
Onumanyi et al. [18].

The paper is organized as follows: In Section 2, we discuss
the development of the Fractional Adams Moulton’s Method.
Section 3 details the stability properties and implementation
of the methods. In Section 4, we give five test problems to
elucidate our theoretical results. Finally, we give some con-
cluding remarks in Section 5.

2. Fractional Adams Moulton’s methods

In this section, we shall construct a k-step Continuous
Fractional Adams Moulton’s Methods (CFAMM) which will
be used to obtain the discrete Fractional Adams Moulton’s
Methods (FAMM). The CFAMM has the general form

k
U(X) = Vk-1 (X)Yn+k—1 +h® Z ﬂj(x)frwj (4)
j=0

where y;_1 (x), B;(x) are continuous coefficients. We assume
that y, ; = U(xn + jh) is the numerical approximation to the
analytical solution y(x,, ;) and f, j = D*U(x, + jh) is an ap-
proximation to D*y(x,,_ ;). The CFAMM is constructed from
its equivalent form by requiring that the exact solution y(x)
is locally approximated by the function (4) on the interval
[Xn, Xp k)

Theorem 2.1. Let (4) satisfy the following conditions
UXnik-1) = Ynik-1

Dau(xn+j) = fn+j» ] = 0(1)(k) (5)
then the continuous representation (4) is equivalent to
det (V; )
Z Pi(x (6)
det (V)
where we define the matrix V as
Po(Xnik-1) Pe(Xp k1)
D¥Py(xn) D*Py(xn)
v = | D*Po(xn41) D*Py(Xns1)
DaPO(Xn+k) DaPk (Xn+k)

V; is obtained by replacing the jth column of V by W where T
denotes the transpose, Pj(x) = xJ, j = 0(1)k are basis functions
and W is a vector given by

W= (Vn+k71sfn7fn+17 ~-~7fn+k)T~

Proof. We require that the method (4) be defined by the as-
sumed polynomial basis functions

k
Vi1 () =Y Vierx1B&)

i=0

k
S b B jP(X).

i=0

h By (x) = j=0(Dk ™)

where ;1 x_1, h* Bi41 j are coefficients to be determined.
Substituting (7) into (4), we have

k Kok
U =Y Vet POVt + D Y h*Biaa jB(X) fosj

i=0 j=0 i=0

which may be written as

k k
u) =5y {Vi+1,l<1}’n+k1 + Y h*Bii1jfari (RO

i=0 j=0

and expressed as

k

U®x) = Z 7;P.(x) (8)
i=0

where

k
Ti = Vit1.k-1Yn+k-1 T Zhaﬁiﬂ,]’fnﬂ
j=0

By imposing condition (5) on (8), we obtain a system of
(k + 1) equations, which can be expressed as V = LW where
L= (19.71.....T;)T is a vector of (k + 1) undetermined coef-
ficients. Using Crammer’s rule, the elements of L can be ob-
tained and are given by

. det(v)
T det (V)"

where V; is obtained by replacing the jth column of V by W.
We rewrite (8) using the newly found elements of L as

j=0(1)k

UG - Z ey o

O

Remark 2.2. The continuous scheme (4) which is equivalent
to (6) is evaluated at x,,,, to obtain the k-step FAMM of the
form

k
Ynik — Ynrk—1 = h* Z,ijnﬂ (10)
=0

Also, we emphasize that the continuous scheme (6) is evalu-
ated at x,,,;, i = 0(1)(k — 2) to obtain
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