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Abstract

Based on a new general ansatz and a general subepuation, a new general algebraic method named elliptic equation

rational expansion method is devised for constructing multiple travelling wave solutions in terms of rational special

function for nonlinear evolution equations (NEEs). We apply the proposed method to solve Whitham–Broer–Kaup

equation and explicitly construct a series of exact solutions which include rational form solitary wave solution, rational

form triangular periodic wave solutions and rational wave solutions as special cases. In addition, the links among our

proposed method with the method by Fan [Chaos, Solitons & Fractals 2004;20:609], are also clarified generally.

� 2005 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of soliton theory, there have been a great amount of activities aiming to find methods for

exact solutions of NEEs, such as Bäcklund transformation, Darboux transformation, Cole-Hopf transformation, var-

ious tanh methods, various Jacobi elliptic function methods, variable separation approach, Painlevé method, homoge-

neous balance method, similarity reduction method and so on [1–17]. Among those, the tanh method provides a

straightforward and effective algorithm to obtain particular travelling solutions for a large number of NEEs. Recently,

much research work has been concentrated on the various extensions and applications of the tanh method[7–17]. Re-

cently, in Refs. [18], Fan developed a new algebraic method with symbolic computation for obtaining the above-men-

tioned various travelling wave solutions in a unified way, but also easily provides us with new and more general

travelling wave solutions in terms of special functions such as hyperbolic, rational, triangular, Weierstrass and Jacobi

elliptic double periodic functions. In Refs. [19], we extended the Fan�s method [18] to a generalized method. As a result,
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we can not only successfully recover the previously known travelling wave solutions found by Fan�s method but also

obtain some new formal solutions. More recently, we present the Jacobi elliptic function rational expansion method [20]

and the Riccati equation rational expansion method [21], in which the ansatzes are firstly express as rational form.

The present work is motivated by the desire to present a new subequation method, named elliptic equation rational

expansion method, by proposing a more general ansatz so that it can be used to obtained more types and general formal

solutions which contain not only the results obtained by using the various methods [6–21] but also other types of solu-

tions. The appeal and success of the method lies in the fact: one circumvents integration to get explicit solutions based

on the fact that soliton solutions are essentially of a localized nature. Writing the soliton solutions of a NEEs as the

polynomials of auxiliary variables of the elliptic equation [22–24], the NEEs can changed into a nonlinear system of

algebraic equations. The system can be solved with the help of symbolic computation. For illustration, we apply the

generalized method to solve the Whitham–Broer–Kaup equation and successfully construct new and more general solu-

tions including rational form solitary wave solutions, rational form triangular periodic solutions and ration wave solu-

tions for the Whitham–Broer–Kaup equation.

This paper is organized as follows. In Section 2, we summarize the elliptic equation rational expansion method. In

Section 3, we apply the method to the Whitham–Broer–Kaup equation and bring out many solutions. Conclusions will

be presented in finally.

2. Summary of the elliptic equation rational expansion method

In the following we would like to outline the main steps of our method:

Step 1. For a given NEE system with some physical fields ui(x,y, t) in three variables x, y, t,

F iðui; uit; uix; uiy ; uitt; uixt; uiyt; uixx; uiyy ; uixy ; . . .Þ ¼ 0; ð2:1Þ

by using the wave transformation

uiðx; y; tÞ ¼ UiðnÞ; n ¼ kðxþ ly þ ktÞ; ð2:2Þ

where k, l and k are constants to be determined later. Then the nonlinear partial differential Eq. (2.1) is reduced to a

nonlinear ordinary differential equation(ODE):

GiðUi;U 0
i;U

00
i ; . . .Þ ¼ 0: ð2:3Þ

Step 2. We introduce a new ansätz in terms of finite rational formal expansion in the following forms:

UiðnÞ ¼ ai0 þ
Xmi

j¼1

aij/
jðnÞ þ bij/

j�1ðnÞ/0ðnÞ
ðl/ðnÞ þ 1Þj

ð2:4Þ

and the new variable / = /(n) satisfying the elliptic equation [22–24]

/02 ¼ d/
dn

� �2

¼ h0 þ h1/þ h2/
2 þ h3/

3 þ h4/
4; ð2:5Þ

where hq, ai0, aij and bij (q = 0,1, . . . , 4; i = 1,2, . . . ; j = 1,2, . . .,mi) are constants to be determined later.

Step 3. The underlying mechanism for a series of fundamental solutions such as polynomial, exponential, solitary

wave, rational, triangular periodic, Jacobi and Weierstrass doubly periodic solutions to occur is that differ effects that

act to change wave forms in many nonlinear equations, i.e. dispersion, dissipation and nonlinearity, either separately or

various combination are able to balance out. We define the degree of Ui(n) as D[Ui(n)] = ni, which gives rise to the de-

grees of other expressions as

D½U ðaÞ
i � ¼ ni þ a; D½Ub

i ðU
ðaÞ
j Þs� ¼ nibþ ðaþ njÞs: ð2:6Þ

Therefore we can get the value of mi in Eq. (2.4). If ni is a nonnegative integer, then we first make the transformation

Ui ¼ V ni
i .

Step 4. Substitute Eq. (2.4) into Eq. (2.3) along with Eq. (2.5) and then set all coefficients of /pðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4

q¼0hq/
q

q� �q
(p = 1,2, . . . ,q = 0,1.) of the resulting system�s numerator to be zero to get an over-determined system of nonlinear alge-

braic equations with respect to k, l, ai0, aij and bij (i = 1,2, . . . ; j = 1,2, . . . ,mi).

Step 5. Solving the over-determined system of nonlinear algebraic equations by use of Maple, we would end up with

the explicit expressions for k, l, ai0, aij and bij (i = 1,2, . . . ; j = 1,2, . . .,mi).
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