On the geometry and homology of certain simple stratified varieties

T. Hübsch ${ }^{\mathrm{a}, \mathrm{b}}$, A. Rahman ${ }^{\mathrm{a}, \mathrm{b}, *}$
${ }^{a}$ Department of Mathematics, Howard University, Washington, DC 20059, USA
${ }^{\mathrm{b}}$ Department of Physics and Astronomy, Howard University, Washington, DC 20059, USA

Received 31 March 2003; received in revised form 28 April 2004; accepted 28 April 2004
Available online 19 June 2004

Abstract

We study certain mild degenerations of algebraic varieties which appear in the analysis of a large class of supersymmetric theories, including superstring theory. We analyze Witten's σ-model [Nucl. Phys. B 403 (1993) 159] and find that the non-transversality of the superpotential induces additional singularities and a stratification of the ground state variety. This stratified variety admits certain homology groups such that $\oplus_{q} H^{2 q}$ satisfies the "Kähler package" of requirements [Ann. Math. Studies 102 (1982) 303]. Also, this $\oplus_{q} H^{2 q}$ extends the "flopped" pair of small resolutions [Nucl. Phys. B 416 (1994) 414; Nucl. Phys. B 330 (1990) 49; Commun. Math. Phys. 119 (1988) 431] to an "(exo)flopped" triple, and is compatible with both mirror symmetry [S.-T. Yau (Ed.), Mirror Manifolds, International Press, Hong Kong, 1990; B. Greene, S.-T. Yau (Eds.), Mirror Manifolds II, International Press, Hong Kong, 1996] and string theory [Mod. Phys. Lett. A 12 (1997) 521; Nucl. Phys. B 451 (1995) 96] results. Finally, we revisit the conifold transition [Nucl. Phys. B 330 (1990) 49] as it applies in our formalism. © 2004 Published by Elsevier B.V.

MSC: 14F43; 14J32
$J G P$ SC: Differential geometry; Strings
Keywords: Stratified varieties; Superstring thoery; σ-Model

1. Introduction, results and summary

In string theory, rather than being an assumed arena, the spacetime is identified with the dynamically determined 'ground state variety' of a (supersymmetric) σ-model [11,20,23].

[^0]In the simplest physically interesting and non-trivial case [3,23], the spacetime is of the form $M^{3,1} \times K$, where K is a compact Calabi-Yau three-fold modeled from the (bosonic subset of the) 'field space' of the σ-model ${ }^{1}, \mathcal{F}=\left\{p, s_{0}, \ldots, s_{4}\right\} \simeq \mathbb{C}^{6}$, which admits a \mathbb{C}^{*} action:

$$
\begin{equation*}
\hat{\lambda}:\left\{p, s_{0}, \ldots, s_{4}\right\} \mapsto\left\{\lambda^{-5} p, \lambda s_{0}, \ldots, \lambda s_{5}\right\}, \quad \lambda \in \mathbb{C}^{*} \tag{1}
\end{equation*}
$$

The 'ground state variety' is defined to be $[2,23]$

$$
\begin{equation*}
\mathcal{V} \stackrel{\text { def }}{=}\left[(\partial W)^{-1}(0)-0\right] / \hat{\lambda}, \tag{2}
\end{equation*}
$$

with the $\hat{\lambda}$-invariant holomorphic 'superpotential'

$$
\begin{equation*}
W \stackrel{\text { def }}{=} p \cdot G(s) \tag{3}
\end{equation*}
$$

Alternatively, we denote by $\hat{\bar{\lambda}}$ the $|\lambda|=1$ restriction of the map (1), and define the 'potential'

$$
\begin{equation*}
U_{r} \stackrel{\text { def }}{=}\|\partial W\|^{2}+D_{r}^{2} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{r} \stackrel{\text { def }}{=}\|s\|^{2}-5|p|^{2}-r, \quad r \in \mathbb{R} \tag{5}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathcal{V} \simeq\left[U_{r}^{-1}(0)-0\right] / \hat{\bar{\lambda}} \tag{6}
\end{equation*}
$$

Due to the positive definiteness of U_{r},

$$
\begin{equation*}
U_{r}^{-1}(0)=(\partial W)^{-1}(0) \cap D_{r}^{-1}(0) \tag{7}
\end{equation*}
$$

Furthermore, the $\hat{\lambda}$-invariance of $W=p G$ implies that $G(s)$ is a degree- 5 homogeneous complex polynomial

$$
\begin{equation*}
G\left(\lambda s_{0}, \ldots, \lambda s_{4}\right)=\lambda^{5} G\left(s_{0}, \ldots, s_{4}\right) \tag{8}
\end{equation*}
$$

whereupon the zero locus of ∂W is the intersection of the cones

$$
\begin{equation*}
(\partial W)^{-1}(0)=G^{-1}(0) \cap\left(p \cdot \partial_{s} G\right)^{-1}(0) \tag{9}
\end{equation*}
$$

The above definition may then be rephrased as follows.
Definition 1. Given the polynomials $G(s)$ and D_{r} as defined in Eqs. (8) and (5), respectively, the 'ground state variety' is

$$
\begin{align*}
\mathcal{V} & =\left\{G^{-1}(0) \cap\left(p \cdot \partial_{s} G\right)^{-1}(0)-0\right\} / \hat{\lambda} \\
& =\left\{G^{-1}(0) \cap\left(p \cdot \partial_{s} G\right)^{-1}(0) \cap D_{r}^{-1}(0)-0\right\} / \hat{\bar{\lambda}} \tag{10}
\end{align*}
$$

where the S^{1}-action, $\hat{\bar{\lambda}}$, in the latter (symplectic) quotient is the $|\lambda|=1$ restriction of the \mathbb{C}^{*}-action (1) in the former (holomorphic) quotient.

$$
\mathcal{V}^{+}\left(\mathcal{V}^{-}\right) \text {shall denote the restriction of } \mathcal{V} \text { to positive (negative) values of } r \text { in Eq. (5). }
$$

[^1]
https://daneshyari.com/en/article/10735179

Download Persian Version:
https://daneshyari.com/article/10735179

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: thubsch@howard.edu (T. Hübsch), arahman@howard.edu (A. Rahman).

[^1]: ${ }^{1}$ To avoid obscuringly complicated notation, we focus on a simple example and discuss generalizations later.

