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a b s t r a c t

We present a rigorous and functorial quantization scheme for affine field theories, i.e.,
field theories where local spaces of solutions are affine spaces. The target framework for
the quantization is the general boundary formulation, allowing to implement manifest
locality without the necessity for metric or causal background structures. The quantization
combines the holomorphic version of geometric quantization for state spaces with
the Feynman path integral quantization for amplitudes. We also develop an adapted
notion of coherent states, discuss vacuum states, and consider observables and their
Berezin–Toeplitz quantization. Moreover, we derive a factorization identity for the
amplitude in the special case of a linear field theory modified by a source-like term and
comment on its use as a generating functional for a generalized S-matrix.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Ever since its inception, efforts have been made to put quantum field theory on an axiomatic basis. There are
multiple objectives behind such undertakings. Conceptually, one would like to have a better understanding of what
quantum field theory ‘‘really is’’ (and what it is not), possibly including an elucidation of aspects of the meaning or
interpretation of quantum theory itself. Mathematically, an axiomatic system offers a rigorous definition and a context
to make mathematically precise statements about certain quantum field theories or quantum field theory as such. Finally,
an axiomatic formulation may help to indicate how quantum field theories can be extended to realms where they have not
previously been experimentally tested. An important example for the latter is the extension fromMinkowski space to more
general curved spacetime.

An axiomatic approach that has provenparticularly useful in this latter respect is algebraic quantum field theory (AQFT) [1].
In AQFT the causal structure of spacetime is intimately entwined with the algebraic structure of the objects of the quantum
theory. This has advantages and disadvantages. Most notably, this leads to a very concise way of encoding local physics in a
spacetime region,with just one coremathematical structure (a vonNeumann or C∗ algebra) per spacetime region.Moreover,
in quantization prescriptions this structure is directly linked to the classical observables in that spacetime region. This
conciseness combined with mathematical rigor has justifiably fascinated physicists and mathematicians over the decades,
making it today the best developed axiomatic approach to quantum field theory.

On the other hand, the central role played by causality in the core structure of AQFT makes it indispensable as a fixed
ingredient of spacetime. This precludes the direct applicability of AQFT to situations where such a structure is not a priori
given.

This limitation, which is even more stringent in most other approaches to quantum field theory, has motivated a new
axiomatic approach, called the general boundary formulation (GBF). The GBF has been put forward with the express aim
of disentangling the elementary mathematical objects of a theory (in this case states, amplitudes, and observables) and
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their basic physical interpretation, from the metric or causal structure of spacetime. This is achieved on the one hand by
explicitly localizing states onhypersurfaces and amplitudes in spacetime regions [2] in the spirit of topological quantum field
theory [3]. On the other hand this requires an extension of the probability postulates of quantum theory for amplitudes [4]
and observables [5]. While still considerably less developed than, say, AQFT, the GBF offers the perspective of further
extending the realm of quantum field theory to contexts where spacetime is not equipped with a predetermined metric
or causal background structure. It is widely expected that a quantum theory of gravity should live precisely in such a
‘‘background independent’’ context.

Most realistic quantum field theories are obtained or at least motivated through a process of quantization starting with
a classical field theory. It is thus important for the usefulness of a given axiomatic approach that there be quantization
prescriptions that produce the elementary objectswhich are the subject of the axioms starting fromdata encoding a classical
field theory. In the case of the GBF the quantization prescription most straightforwardly adapted from well known tools of
quantum (field) theory is Schrödinger–Feynman quantization [4,6], which combines the Schrödinger representation [7] for
state spaces with the Feynman path integral [8] for amplitudes. This quantization prescription has been successfully applied
in various contexts including a non-perturbative integrablemodel [9], a generalization of the perturbative S-matrix [10], and
in curved spacetime [11,12]. Even though many of these applications lead to structures that rigorously satisfy the axioms,
the quantization prescription itself is not rigorously formulated, at least not in its present form.

Ideally, quantization should not only be rigorous, but should provide something like a functor from a category of classical
theories to a category of quantum theories. For the GBF such a functorial quantization scheme has indeed been described
recently for the case of linear field theory [13]. There, the concept of a linear classical field theory is axiomatized and a
construction is given that produces from the elementary objects of such a classical theory the elementary objects of a
quantum field theory in the framework of the GBF. In particular, it is proven that the objects of the quantum theory obtained
in this way do indeed satisfy the axioms of the GBF. Moreover, although it is not made explicit there, this construction
is functorial, and in many ways so. For example, for a given system of spacetime hypersurfaces and regions we obtain a
functor if we take the categories of classical and quantum field theories with morphisms given by the respective notion
of ‘‘subtheory’’: On the classical side a ‘‘subtheory’’ is obtained by restricting the local spaces of solutions consistently to
subspaces, while on the quantum side a ‘‘subtheory’’ is obtained by decomposing the local Hilbert spaces of states into
tensor products and selecting one component in a consistent way. Other possibilities for choices of categories include ones
where each object carries its own system of hypersurfaces and regions etc.

A classical linear field theory is formalized in [13] as follows: For each region in spacetime we are given a real vector
space of solutions of the field equations. Also, for each hypersurface in spacetime we are given a real vector space of germs
of solutions. The latter spaces are moreover equipped with non-degenerate symplectic forms. Then, the natural maps from
the former spaces to the latter (restricting solutions in regions to neighborhoods of the boundary) have to yield Lagrangian
subspaces with respect to these symplectic forms. Although perhaps not obviously so, these conditions are well motivated
from Lagrangian field theory. An additional ingredient which might be seen as structure already pertaining to the quantum
realm is a compatible complex structure on the solution space for each hypersurface. This summarizes the axioms given
in [13] for a classical linear field theory in an informal language.

The quantization prescription consists then of a combination of a version of geometric quantization for hypersurfaces
and a certain integral quantization for regions. For each hypersurface, the construction of the associated Hilbert space of
states is equivalent to the usual Fock space construction, where the phase space (here really the space of germs of classical
solutions in a neighborhoodof the hypersurface)with additional symplectic and complex structure is seen as the (dual of the)
1-particle Hilbert space. However, it is realized concretely as a space of holomorphic functions in the spirit of Bargmann.
From the point of view of geometric quantization this is really the space of Kähler polarized sections of the prequantum
bundle. For each region, the quantization prescription in [13] is given by a seemingly ad hoc integral prescription, although
verified by providing the ‘‘right’’ results in certain examples.

In the present paper we consider affine field theory, as a first case of a rigorous and functorial quantization prescription
targeting the GBF beyond linear field theory. By affine field theory we mean here field theory with affine spaces of local
solutions and such that the natural symplectic forms associated to hypersurfaces are invariant with respect to the affine
structure in addition to being non-degenerate. In many ways this can be seen as a generalization of the linear case and its
treatment in [13]. For hypersurfaces, this requires a refinement of the geometric quantization prescription (Section 2.3),
clarifying the role of the prequantum bundle and its relevant trivializations. For regions, we motivate the quantization as a
variant of the Feynman path integral prescription (Section 2.4), thus justifying at the same time the origin of the prescription
given in [13] as a special case of this.

Based on a suitable geometric setting for spacetime (Section 3.1), the axioms for classical field theory (Section 3.2) are
a relatively straightforward generalization of those for linear field theory given in [13]. However, they involve additional
structural elements from Lagrangian field theory (see Sections 2.1 and 2.2), notably the action and the symplectic potential.
Also, they are considerably more extensive as both local spaces of solutions and their tangent spaces need to be kept track
of separately since they are no longer canonically identified.

The central part of this paper is Section 4 where the quantization prescription is specified rigorously and the validity of
the GBF core axioms (listed in Section 3.3) is proven. As in [13] the Hilbert spaces of states associated to hypersurfaces are
realized concretely as spaces of functions (Section 4.1). However, the domain spaces (or rather their extensions) for these
functions do not directly carry measures as in [13]. Rather, any choice of base point gives rise to an identification with a
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