One-harmonic invariant vector fields on three-dimensional Lie groups

E. Calviño-Louzao, J. Seoane-Bascoy, M.E. Vázquez-Abal, R. Vázquez-Lorenzo*
Department of Geometry and Topology, Faculty of Mathematics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain

ARTICLE INFO

Article history:

Received 26 January 2012
Received in revised form 18 February 2012
Accepted 21 February 2012
Available online 27 February 2012

MSC:

53C50
53B30

Keywords:

Harmonic maps
Affine Killing
1-harmonic vector field

Abstract

We determine all left-invariant vector fields on three-dimensional Lie groups which define harmonic sections of the corresponding tangent bundles, equipped with the complete lift metric.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let (M, g) be an n-dimensional pseudo-Riemannian manifold. A vector field X determines a section of the tangent bundle and therefore it is natural to investigate vector fields from the point of view of the corresponding maps $X: M \rightarrow T M$. Harmonic and minimal vector fields have been investigated in the literature by considering the Sasaki lift of g as the induced metric on $T M$ (see [1-3] and the references therein). However, when investigating harmonicity problems it is also relevant to endow $T M$ with the complete lift metric g^{c}, which is of neutral signature (n, n) [4-7].

Vector fields on pseudo-Riemannian manifolds (M, g) defining harmonic sections $X:(M, g) \rightarrow\left(T M, g^{c}\right)$ have been investigated in the literature under different names like geodesic vector fields [8], infinitesimal harmonic transformations [9,10] and 1-harmonic vector fields [11] since the harmonicity property is equivalent to the vanishing of the linear part of the tension field of the local one-parameter group of infinitesimal point transformations, i.e., trace $\mathcal{L}_{X} \nabla=0$, where ∇ is the Levi-Civita connection of (M, g) and \mathcal{L} stands for the Lie derivative. This property has been recently linked with the existence of Ricci solitons in [12], by showing that any Ricci soliton is a 1-harmonic vector field.

The purpose of this paper is to determine all left-invariant 1-harmonic vector fields on three-dimensional Lie groups. Obviously affine Killing vector fields (and hence Killing vector fields) are 1-harmonic, so we emphasize the existence of the non-affine Killing ones.

We organize this paper as follows. In Section 2 we review the description of all three-dimensional Lorentzian Lie algebras and some basic facts on 1-harmonic vector fields. We analyze the existence of left-invariant Killing, affine Killing and 1-harmonic vector fields on unimodular Lorentzian Lie groups in Section 3, while the non-unimodular Lorentzian case is considered in Section 4. In each case we determine the corresponding vector subspaces of Killing, affine Killing and 1-harmonic left-invariant vector fields. Finally, in Section 5 the Riemannian case is analyzed; we will omit the details since

[^0]the results are obtained essentially as in Sections 3 and 4. Moreover, in Section 5 it is also shown that the class of left-invariant 1-harmonic vector fields is strictly larger than the class of Lorentzian Ricci solitons.

2. Preliminaries

2.1. Three-dimensional Lorentzian Lie algebras

Let \times denote the Lorentzian vector product on \mathbb{R}_{1}^{3} induced by the product of the para-quaternions (i.e., $e_{1} \times e_{2}=$ $-e_{3}, e_{2} \times e_{3}=e_{1}, e_{3} \times e_{1}=e_{2}$, where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is an orthonormal basis of signature $\left.(++-)\right)$. Then $[Z, Y]=L(Z \times Y)$ defines a Lie algebra, which is unimodular if and only if L is a self-adjoint endomorphism of \mathfrak{g} [13,14]. Considering the different Jordan normal forms of L, we have the following four classes of unimodular three-dimensional Lorentzian Lie algebras.
Type Ia. If L is diagonalizable with eigenvalues $\{\alpha, \beta, \gamma\}$ with respect to an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of signature (++-), then the corresponding Lie algebra is given by

$$
\left(\mathfrak{g}_{\mathrm{la}}\right) \quad\left[e_{1}, e_{2}\right]=-\gamma e_{3}, \quad\left[e_{1}, e_{3}\right]=-\beta e_{2}, \quad\left[e_{2}, e_{3}\right]=\alpha e_{1}
$$

Type Ib . Assume L has a complex eigenvalue. Then, with respect to an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of signature $(++-)$, one has

$$
L=\left(\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \gamma & -\beta \\
0 & \beta & \gamma
\end{array}\right), \quad \beta \neq 0
$$

and thus the corresponding Lie algebra is given by

$$
\left(\mathfrak{g}_{\mathrm{bb}}\right) \quad\left[e_{1}, e_{2}\right]=\beta e_{2}-\gamma e_{3}, \quad\left[e_{1}, e_{3}\right]=-\gamma e_{2}-\beta e_{3}, \quad\left[e_{2}, e_{3}\right]=\alpha e_{1}
$$

Type II. Assume L has a double root of its minimal polynomial. Then, with respect to an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of signature $(++-)$, one has

$$
L=\left(\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \frac{1}{2}+\beta & -\frac{1}{2} \\
0 & \frac{1}{2} & -\frac{1}{2}+\beta
\end{array}\right)
$$

and thus the corresponding Lie algebra is given by

$$
\left(\mathfrak{g}_{\text {II }}\right) \quad\left[e_{1}, e_{2}\right]=\frac{1}{2} e_{2}-\left(\beta-\frac{1}{2}\right) e_{3}, \quad\left[e_{1}, e_{3}\right]=-\left(\beta+\frac{1}{2}\right) e_{2}-\frac{1}{2} e_{3}, \quad\left[e_{2}, e_{3}\right]=\alpha e_{1}
$$

Type III. Assume L has a triple root of its minimal polynomial. Then, with respect to an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of signature $(++-)$, one has

$$
L=\left(\begin{array}{ccc}
\alpha & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \alpha & 0 \\
-\frac{1}{\sqrt{2}} & 0 & \alpha
\end{array}\right)
$$

and thus the corresponding Lie algebra is given by

$$
\left(\mathfrak{g}_{\text {III }}\right) \quad\left[e_{1}, e_{2}\right]=-\frac{1}{\sqrt{2}} e_{1}-\alpha e_{3}, \quad\left[e_{1}, e_{3}\right]=-\frac{1}{\sqrt{2}} e_{1}-\alpha e_{2}, \quad\left[e_{2}, e_{3}\right]=\alpha e_{1}+\frac{1}{\sqrt{2}}\left(e_{2}-e_{3}\right)
$$

Next we treat the non-unimodular case. First of all, recall that a solvable Lie algebra \mathfrak{g} belongs to the special class \mathfrak{S} if $[x, y]$ is a linear combination of x and y for any pair of elements in \mathfrak{g}. Any left-invariant metric on \mathfrak{S} is of constant sectional curvature [15,16]. Now, consider the unimodular kernel $\mathfrak{u}=\operatorname{ker}(\operatorname{trace} a d: \mathfrak{g} \rightarrow \mathbb{R})$. It follows from [17] that non-unimodular Lorentzian Lie algebras of non-constant sectional curvature are given, with respect to a suitable basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, by

$$
\left(\mathfrak{g}_{\mathrm{IV}}\right) \quad\left[e_{1}, e_{2}\right]=0, \quad\left[e_{1}, e_{3}\right]=\alpha e_{1}+\beta e_{2}, \quad\left[e_{2}, e_{3}\right]=\gamma e_{1}+\delta e_{2}, \quad \alpha+\delta \neq 0
$$

where one of the following holds:
IV. $1\left\{e_{1}, e_{2}, e_{3}\right\}$ is orthonormal with $g\left(e_{1}, e_{1}\right)=-g\left(e_{2}, e_{2}\right)=-g\left(e_{3}, e_{3}\right)=-1$ and the structure constants satisfy $\alpha \gamma-\beta \delta=0$.

https://daneshyari.com/en/article/10735212

Download Persian Version:

https://daneshyari.com/article/10735212

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: estebcl@edu.xunta.es (E. Calviño-Louzao), javier.seoane@usc.es (J. Seoane-Bascoy), elena.vazquez.abal@usc.es (M.E. Vázquez-Abal), ravazlor@edu.xunta.es (R. Vázquez-Lorenzo).

