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1. Introduction

Let (M, g) be an n-dimensional pseudo-Riemannian manifold. A vector field X determines a section of the tangent bundle
and therefore it is natural to investigate vector fields from the point of view of the corresponding maps X : M — TM.
Harmonic and minimal vector fields have been investigated in the literature by considering the Sasaki lift of g as the induced
metric on TM (see [1-3] and the references therein). However, when investigating harmonicity problems it is also relevant
to endow TM with the complete lift metric g¢, which is of neutral signature (n, n) [4-7].

Vector fields on pseudo-Riemannian manifolds (M, g) defining harmonic sections X : (M, g) — (TM, g°) have been
investigated in the literature under different names like geodesic vector fields [8], infinitesimal harmonic transformations
[9,10] and 1-harmonic vector fields [11] since the harmonicity property is equivalent to the vanishing of the linear part of
the tension field of the local one-parameter group of infinitesimal point transformations, i.e., trace £xV = 0, where V is
the Levi-Civita connection of (M, g) and £ stands for the Lie derivative. This property has been recently linked with the
existence of Ricci solitons in [12], by showing that any Ricci soliton is a 1-harmonic vector field.

The purpose of this paper is to determine all left-invariant 1-harmonic vector fields on three-dimensional Lie groups.
Obviously affine Killing vector fields (and hence Killing vector fields) are 1-harmonic, so we emphasize the existence of the
non-affine Killing ones.

We organize this paper as follows. In Section 2 we review the description of all three-dimensional Lorentzian Lie algebras
and some basic facts on 1-harmonic vector fields. We analyze the existence of left-invariant Killing, affine Killing and
1-harmonic vector fields on unimodular Lorentzian Lie groups in Section 3, while the non-unimodular Lorentzian case
is considered in Section 4. In each case we determine the corresponding vector subspaces of Killing, affine Killing and
1-harmonic left-invariant vector fields. Finally, in Section 5 the Riemannian case is analyzed; we will omit the details since
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the results are obtained essentially as in Sections 3 and 4. Moreover, in Section 5 it is also shown that the class of left-invariant
1-harmonic vector fields is strictly larger than the class of Lorentzian Ricci solitons.

2. Preliminaries
2.1. Three-dimensional Lorentzian Lie algebras

Let x denote the Lorentzian vector product on ]R? induced by the product of the para-quaternions (i.e., e; X e; =
—e3, ey X €3 = €1, €3 X e; = e, Where {eq, e,, es} is an orthonormal basis of signature (+ + —)). Then [Z, Y] = L(Z x Y)
defines a Lie algebra, which is unimodular if and only if L is a self-adjoint endomorphism of g [13,14]. Considering the
different Jordan normal forms of L, we have the following four classes of unimodular three-dimensional Lorentzian Lie
algebras.

Typela.If Lis diagonalizable with eigenvalues {«, 8, y } with respect to an orthonormal basis {e1, e,, e3} of signature (++—),
then the corresponding Lie algebra is given by

(g1a) [e1,e2] = —yes, [e1, e3] = —Bey, [e2, €3] = aey.

Type Ib. Assume L has a complex eigenvalue. Then, with respect to an orthonormal basis {e;, e,, e3} of signature (+ + —),
one has

a 0 O
L=(o v -B), B#o0
0 B8 v
and thus the corresponding Lie algebra is given by
(o) [er, el =Be; —vyes,  [er,es] = —ye; — fes,  [ez, €3] = ey

Type 1I. Assume L has a double root of its minimal polynomial. Then, with respect to an orthonormal basis {e1, e;, e3} of
signature (+ + —), one has

o 0 0
1 1
1=|% 3¢ =
o L _lyg
2 2

and thus the corresponding Lie algebra is given by

2

Type IIl. Assume L has a triple root of its minimal polynomial. Then, with respect to an orthonormal basis {eq, e,, e3} of
signature (+ + —), one has

1 1 1 1
(o) [e1,e2] = ey — <,3 - 5) €3, [er, e3] = — <f3 + 5) € — 593, [e2, e3] = ae;.

1 1
a .
V2 V2
1
L=]| — o 0
V2
! 0
o o
NG
and thus the corresponding Lie algebra is given by
1 1
(gm) [e1, e2] = ——=e; — aes, [e1, e3] = ———e1 — wey, [e2, e3] = ae; + —=(ex — e3).
V2 V2 V2

Next we treat the non-unimodular case. First of all, recall that a solvable Lie algebra g belongs to the special class &
if [x, y] is a linear combination of x and y for any pair of elements in g. Any left-invariant metric on & is of constant
sectional curvature [15,16]. Now, consider the unimodular kernel u = ker(trace ad : g — R). It follows from [17] that
non-unimodular Lorentzian Lie algebras of non-constant sectional curvature are given, with respect to a suitable basis
{e1, ez, e3}, by

(orv) [e1,e2] =0, [e1, e3s] = aey + Bey, [e2, e3] = yer + dey, a+38#0,
where one of the following holds:

IV.1 {eq, e;, e3} is orthonormal with g(e;,e;) = —g(e;,e3) = —g(es,e3) = —1 and the structure constants satisfy
ay —Bé=0.
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