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a b s t r a c t

This paper considers a simple mechanical model of a pressure relief valve. For a wide region of parameter
values, the valve undergoes self-oscillations that involve impact with the valve seat. These oscillations
are born in a Hopf bifurcation that can be either super- or sub-critical. In either case, the onset of
more complex oscillations is caused by the occurrence of grazing bifurcations, where the limit cycle
first becomes tangent to the discontinuity surface that represents valve contact. The complex dynamics
that ensues from such points as the flow speed is decreased has previously been reported via brute-
force bifurcation diagrams. Here, the nature of the transitions is further elucidated via the numerical
continuation of impacting orbits. In addition, two-parameter continuation results for Hopf and grazing
bifurcations as well as the continuation of period-doubling bifurcations of impacting orbits are presented.
For yet lower flow speeds, new results reveal chattering motion, that is where there are many impacts
in a finite time interval. The geometry of the chattering region is analysed via the computation of several
pre-images of the grazing set. It is shown how these pre-images organise the dynamics, in particular by
separating initial conditions that lead to complete chatter (an accumulation of impacts) from those which
do not.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The recent extension of classic nonlinear bifurcation theory
to piecewise-smooth dynamical systems (see for example [1–5])
has allowed the qualitative analysis of a vast range of systems
that arise in engineering. Such systems are often nonsmooth by
their very nature due, for example, to impact, backlash, free-play,
switching, dry friction or sticking. In addition to all the nonlinear
phenomena that smooth dynamical systems can undergo, such as
local and global bifurcation of invariant sets, there are a class of
phenomena that are unique to piecewise-smooth systems. These
have been termed discontinuity-induced bifurcations [2,3,6]. They
occur when topological equivalence of the phase portrait is lost
under parameter variation, in which any discontinuity sets must
also be taken into account in the equivalence. Canonical examples
of such discontinuity-induced bifurcations occur when an Ω-limit
set (for example, a limit cycle) becomes tangent (or grazes) with a
discontinuity set.

This paper shall specifically concern an example of the so-
called impacting class of hybrid systems. Here the phase space
is locally a half-space, on the boundary of which, a reset map or
an impact law takes trajectories with positive impacting velocity
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to those with an outgoing velocity, in instantaneous time. There
is a rich literature starting from the 1970s on the simplest forms
of such hybrid systems, the so-called impact oscillators; see for
example [7–14]. Here, complex dynamics has been found to result
from the occurrence of a grazing bifurcation; see [2, Chapter 6]
for the relevant theory, mostly due to Nordmark and co-workers,
e.g. [15].

A distinction between the dynamics described in this paper and
that ofmost other examples of impact oscillators is that the system
in question here is autonomous. That is, the underlying oscillation
that undergoes the grazing bifurcation is intrinsic to the system
and not due to explicit external driving. Indeed, as we shall show,
the systemdisplaysmany of the possible dynamical features of low
degree of freedom impacting systems; in particular, different types
of grazing bifurcation and the complex dynamics associated with
chattering and sticking behaviour. Here, chattering, sometimes
also referred to as zenoness denotes an accumulation of impact
events in finite time, and sticking is where the dynamics becomes
constrained to the impact surface (like a tennis ball coming to
rest on the racket). Yet, for our example, the dynamical equations
contain only three dependent variables. As such, we believe this
model could serve as a good tutorial example for studying the
complex dynamics due to the impact in an autonomous system.

The model also represents an important physical phenomenon,
namely the behaviour of hydraulic pressure relief valves, which are
well known to be susceptible to violent oscillation of the valve body
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at low pressures. These oscillations often involve impact which
can cause extensive damage to both the valve body and its seat,
can contribute to fatigue failure of pressure vessels and piping
components and typically produces considerable noise. Indeed,
the second author spent a whole year in an office in which the
heating valve, due to a plumbing error, continually underwent
flow-induced vibrations of such intensity that their volume caused
significant impediment even to normal conversation!

Thus, the practical motivation beyond providing a good tutorial
example is to explore the influence of themain system parameters
on the valve dynamics and to provide stability maps in terms of
universal dimensionless parameters. Such maps would ease the
design of real-life engineering systems or contribute to unfolding
the root of failures a posteriori. Moreover, due to the hysteresis
of the primary Hopf bifurcation, a large-amplitude impacting limit
cycle is present in the linearly stable parameter range, that cannot
be detected with conventional (smooth) techniques. We believe
that by computing the global, nonlinear stability boundary we
provide a useful tool for pressure relief valve design.

The analysis of pressure valve oscillations has a history that
goes back at least to the late 1960s in the work of Kasai [16].
Further work in the 70s, 80s and 90s includes those in Refs.
[17–23]. Perhaps the most comprehensive nonlinear analysis is
that of Hayashi et al. [24] who finds evidence for chaotic oscillation
in a direct-operated relief valve together connected by a pipe
to an upstream chamber. By modelling the pipe flow using an
unsteady Bernoulli equation, allowing the capacitive characteristic
of the chamber to represent a single degree of freedom, with
another differential equation for pressure, they arrive at a system
of four first-order ODEs for the motion of the valve body. Linear
stability analysiswas augmentedwith direct numerical simulation,
which revealed a period-doubling route chaos. Another relevant
study is that Eyres et al. [25], where the nonlinear dynamics
of a hydraulic damper with a ‘‘blow-off’’ pressure valve was
studied using a combination of direct simulation, numerical and
analytical bifurcation techniques unique to piecewise-smooth
systems. Maccari in [26] includes the continuum dynamics of
the spring and models the valve seat by a massless spring
with nonlinear (smooth) characteristics. Hysteresis and jumps
are found in the force–response and frequency–response curves
together with saddle–node bifurcations of cycles that may result
in unsatisfactory relief valve performance.

The rest of this paper is organised as follows. Section 2 in-
troduces the dimensionless equations of the model system to be
studied, along with a precis of the results previously obtained
on it by the present authors together with G. Licskó [27]. Sec-
tion 3 is then devoted to a description of the dedicated numeri-
cal methods we use in order to numerically analyse the system,
taking care to reflect the nonsmooth nature of the problem. Sec-
tion 4 presents numerically computed bifurcation diagrams of both
smooth and discontinuity-induced bifurcations in both one and
twoparameters. The physical parameters varied represent the flow
rate and the setting of the valve precompression (opening pres-
sure). Section 5 focuses specifically on a geometric interpretation
of the chattering-type behaviour that occurs for low flow rates.
Finally, Section 6 draws conclusions and suggests avenues for
future work.

2. Mathematical model

The model we investigate was introduced in [27] in order to
explain experimentally observed oscillations in a simple hydraulic
system containing a pressure relief valve. Interested readers are
referred to that paper for more on the physical interpretation of
the model and the relation of the dimensionless variables and
parameters presented here to physical, dimensional quantities.

Fig. 1. Sketch of the physical system analysed. Here y1...3 stand for the
dimensionless displacement, velocity and pressure, q is the dimensionless flow rate
entering the system, δ and κ are the (dimensionless) spring precompression and
damping coefficients, r is the restitution coefficient between the seat and the valve
body, β is a measure of the compressibility parameter of the fluid and the elastic
hoses. See [27] for more details.

2.1. Governing equations

Consider the hydrostatic system depicted in Fig. 1. Although
the model itself is highly simplified, it captures features that
are common to many hydraulic power transmission systems. In
particular, the flow rate is assumed to be constant, independent of
the actual load applied to the system. Such a constant flow could
be maintained by a positive displacement pump, such as a gear
pump. Second, the system topology is highly simplified to that of
a single reservoir; nevertheless the properties of the fluid in this
reservoir can be thought of as representing the compressibility of
the hydraulic fluid in a more complex transmission system and
the elasticity of the transmission lines. Most crucially, the system
contains a pressure relief valve for protection of the system to
excess pressure. Finally, for simplicitywe suppose that anymoving
mechanical parts such as hydraulic actuators are at rest, so that the
flow rate of the continuously operating pump is exhausted only
through the relief valve.

The valve itself is modelled as a rigid poppet that is held closed
by a spring. Thus, while the valve is closed, the outflow Qout is
zero, whereas the inflow Qin is a positive constant. During this
state pressure must build up in the chamber, which will cause the
valve to open. Opening the valve causes outflow (typically into a
collection tank), which reduces pressure and allows the valve to
close again. This, in a nutshell, is the origin of oscillation in the
system.

Ignoring any wave or eddy effects in the fluid, the dynamics
of the system can be described by three dynamical variables, the
position y1 and velocity y2 of the poppet, and the pressure in the
chamber y3. The equations of motion for these three quantities
take into account the Newtonian mechanics of the valve body
and the pressure dynamics of the reservoir. Specifically, the non-
dimensional equations can be written in the form

y′

1 = y2 (2.1)

y′

2 = −κy2 − (y1 + δ) + y3 (2.2)

y′

3 = β

q − y1

√
y3

, (2.3)

provided the valve is open (y1 > 0), coupled to the impact law
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which applies whenever y1 = 0 for y−

2 ≤ 0. Here 0 < r < 1 is a
Newtonian coefficient of restitution that approximates the loss of
energy in whenever an impact occurs between the valve body and
its seat. It is also assumed that y3 > 0, i.e. the reservoir pressure
is above the ambient pressure thus the flow direction is always
outwards from the reservoir.

The details of the derivation, including the underlying physical
assumptions can be found in [27], here we describe only the
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