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Abstract

New exact traveling wave solutions to the KdV–Burgers–Kuramoto equation (thereafter KBK equation) are ob-

tained by using trigonometric function expansion method. They are compared with the solutions deduced from other

methods.

� 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Many phenomena are simultaneously involved in nonlinearity, dissipation, dispersion and instability. As Kuramoto

[1] suggested that KBK equation [2]:
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¼ 0 ð1Þ

is an appropriate model to describe these phenomena, where a, b and c are constants. Eq. (1) is also known as the
Kuramoto–Sivashinsky equation [3] or Benney equation [2].

In order to well understand various nonlinear phenomena, many methods for obtaining analytical solutions of

nonlinear evolution equations have been proposed, among them are Hirota’s dependent variable transformation [4], the

inverse scattering method [4], homogeneous balance method [5,11], trial-function method [2], trigonometric function

method [6], tanh-function method [7], truncated expansion method [8] and so on. The solutions of KBK equation

possesses their actual physical application, this is the reason why so many methods, such as Weiss–Tabor–Carnevale

transformation method [3], trial-function method [2], tanh-function method [7], homogeneous balance method [9] and

so on, have been applied to obtained the solution to KBK equation. But no method is both convenient and able to be

used to get as many solutions as possible. Weiss–Tabor–Carnevale transformation method, tanh-function method and

homogeneous balance method are complicated in deriving the solutions to KBK, no explicit solution and parameter

constraint were given in Ref. [7], and only one special case was considered in Ref. [9], so only a special solution was

given there. Trial-function method is a simple one, some solutions can be easily obtained, too. But some solution cannot

be got with this method, either. In this paper, trigonometric function expansion method is used to obtain solutions to

KBK equation and comparison with solutions got in Refs. [2,3,7,9] are given.
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2. Solutions to KBK equation

In order to solve Eq. (1), the following transformation:

n ¼ kðx� ctÞ ð2Þ

is needed, where k is called wave number and c is wave speed.
Substitution (2) into Eq. (1) and integrating it once lead to
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where A is a constant of integration.
Based on the trigonometric function expansion method [6], Eq. (3) may have the following ansatz solution:

uðnÞ ¼
Xn

j¼1
ðaj sinx þ bj cosxÞ sinj�1 x þ a0

where x satisfies relation

dx
dn

¼ sinx ð4Þ

And n can be determined by partially balancing the highest degree nonlinear term and the derivative terms of high order
in Eq. (3), here it is determined as n ¼ 3. So the ansatz solution takes the following form:

u ¼ a0 þ a1 sinx þ a2 sin
2 x þ a3 sin

3 x þ cosxðb1 þ b2 sinx þ b3 sin
2 xÞ ð5Þ

Here stress is needed to lay on the coefficients bj ðj ¼ 1; 2; 3Þ, in order to get nontrivial solutions to Eq. (3), b3 cannot be
set as zero. Similarly, if we set all bj ðj ¼ 1; 2; 3Þ as zeros, no nontrivial solutions can be obtained.
From the ansatz solution (5), the following relations can be easily got:

du
dn

¼ b2 sinx þ ð2b3 � b1Þ sin2 x � 2b2 sin3 x � 3b3 sin4 x þ cosxða1 sinx þ 2a2 sin2 x þ 3a3 sin3 xÞ ð6Þ

d2u

dn2
¼ a1 sinx þ 4a2 sin2 x þ ð9a3 � 2a1Þ sin3 x � 6a2 sin4 x � 12a3 sin5 x þ cosx½b2 sinx þ 2ð2b3 � b1Þ

� sin2 x � 6b2 sin3 x � 12b3 sin4 x� ð7Þ

d3u

dn3
¼ b2 sinx þ 4ð2b3 � b1Þ sin2 x � 20b2 sin3 x � 6ð10b3 � b1Þ sin4 x þ 24b2 sin5 x þ 60b3 sin6 x

þ cosx½a1 sinx þ 8a2 sin2 x þ ð27a3 � 6a1Þ sin3 x � 24a2 sin4 x � 60a3 sin5 x� ð8Þ

u2 ¼ ða20 þ b21Þ þ ð2a0a1 þ 2b1b2Þ sinx þ ð2a0a2 þ a21 þ b22 þ 2b1b3 � b21Þ sin
2 x þ 2ða0a3 þ a1a2

þ b2b3 � b1b2Þ sin3 x þ ð2a1a3 þ a22 þ b23 � b22 � 2b1b3Þ sin
4 x þ 2ða2a3 � b2b3Þ sin5 x þ ða23 � b23Þ sin

6 x

þ 2 cosx½a0b1 þ ða1b1 þ a0b2Þ sinx þ ða2b1 þ a1b2 þ a0b3Þ sin2 x þ ða3b1 þ a2b2 þ a1b3Þ sin3 x

þ ða3b2 þ a2b3Þ sin4 x þ a3b3 sin
5 x� ð9Þ

So substituting (5)–(9) into (3) results in a algebraic equation about expansion coefficients aj and bj. Setting the
coefficients of various sinj x ðj ¼ 0; 1; . . . ; 6Þ and cosx sinj x ðj ¼ 0; 1; . . . ; 5Þ as zeros, one can obtain a set of algebraic
equations about the expansion coefficients aj and bj, i.e.
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ða20 þ b21Þ ¼ A

�ca1 þ ða0a1 þ b1b2Þ þ akb2 þ bk2a1 þ ck3b2 ¼ 0
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2
ð2a0a2 þ a21 þ b22 þ 2b1b3 � b21Þ þ akð2b3 � b1Þ þ 4bk2a2 þ 4ck3ð2b3 � b1Þ ¼ 0
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