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Spatiotemporal chaos in the complex Ginzburg-Landau equation is known to be associated with a
rapid increase in the density of defects, which are isolated points at which the solution amplitude is
zero and the phase is undefined. Recently there have been significant advances in understanding the
details and interactions of defects and other coherent structures, and in the theory of convective and
absolute stability. In this paper, the authors exploit both of these advances to update and clarify the
onset of spatiotemporal chaos in the particular case of the complex Ginzburg-Landau equation with zero
linear dispersion. They show that very slow increases in the coefficient of nonlinear dispersion cause a
shock-hole (defect) pair to develop in the midst of a uniform expanse of plane wave. This is followed by
a cascade of splittings of holes into shock-hole-shock triplets, culminating in spatiotemporal chaos at a
parameter value that matches the change in absolute stability of the plane wave. The authors demonstrate
a close correspondence between the splitting events and theoretical predictions, based on the theory
of absolute stability. They also use measures based on power spectra and spatial correlations to show
that when the plane wave is convectively unstable, chaos is restricted to localised regions, whereas it is
extensive when the plane wave is absolutely unstable.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many spatially extended physical systems exhibit chaotic
dynamics. One model in which such spatiotemporal chaos has
been studied in detail is the (cubic) complex Ginzburg-Landau
equation (CGLE), which arises as the amplitude equation near
a standard supercritical Hopf bifurcation, and which has been
applied effectively to a wide range of physical, chemical and
biological systems [1,2]. In one space dimension, two different
regimes of spatiotemporal chaos occur in the CGLE. In “phase
chaos” the solution amplitude is bounded away from zero, so that
there is long-range phase coherence, and the phase difference
across the whole domain is constant [2-5]. By contrast, “defect
chaos” is characterised by large oscillations in amplitude, including
isolated points (“defects”) at which the amplitude is zero. At such
points the phase is not defined, destroying conservation of the
overall phase difference [6-8]. Changes in parameter values from
the phase chaos to defect chaos regimes are characterised by a
rapid increase in the density of defects [7,9,10]; in some cases there
is an overlap region (“bichaos”) in which there is hysteresis in the
defect density.
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The last few years have seen two major advances that are
relevant to these considerations. Firstly there has been significant
progress in understanding of the details and interaction of
coherent structures, including defects, in the CGLE and other
spatially extended systems [11-14]. Secondly, the theory of
convective and absolute stability has been placed on a firm and
more accessible footing [15-19]. In this paper we exploit both of
these advances to update and clarify the onset of spatiotemporal
chaos in the particular case of the CGLE with zero linear dispersion.

The equation that we study is

9A/dt = 3%A/3x* + A — (1 +ic)|AIPA (1)

where the complex field A is a function of space x and time t,
and ¢ > O is the real valued control parameter. Plane waves are
a fundamental solution form for (1), with the general form A =
V1 — Q2% wherew =c(1—Q%)and—1<Q < 1.

In this study we investigated the dynamics emerging in simula-
tions of (1) under the separated boundary conditions

A=0 atx=0, 0A=0 atx=1, (2)

for a suitably large domain length L and random initial conditions
other than at the boundaries (detailed below). These conditions
have been used in the past to investigate the generation of plane
waves in real systems such as oscillatory chemical reactions and
ecological systems [20-23]. Under these boundary conditions,
when ¢ < 1.110, perturbations to A = 0 evolve to a solution
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Fig. 1. (a)In this single simulation of (1), a gradual increase in the control parameter c causes a progression from an effectively uniform state in |A| (a plane wave in the real
and imaginary parts of A, as is shown for Re Ain (b)) at ¢ = 1.2 to full spatiotemporal chaos at ¢ = 2. This figure combines the spatial profiles of |A| immediately prior to each
increment in ¢ (each increment was 0.001, and increments were made every 3000 time units). Note that values of |A| < 0.5 are shown in the same colour; this aids visual
clarity, since the regions in which |A| < 0.5 are very localised in space. See Fig. 2 for alternative view of this data, for specific values of c. (b) Exactly the same simulation as
in (a) but instead showing Re A. This simulation took 10 days on an Intel Xenon X5560, 1333 MHz processor, with a 64 bit operating system.

that consists of half of a stationary Nozaki-Bekki hole [24,25],
together with a thin boundary layer near x = L. When the
linear dispersion parameter in the CGLE is zero, the (unique)
stationary Nozaki-Bekki hole has a very simple analytical form:
|A| = |A*| tanh(x/~/2), 3, argA = /1 — |A*|? tanh(x/~/2), where
|A*(c)| = ([1+ /1 4+ (8/9)c?]/2)~1/2 [22,24]. There is very close
agreement between this formula and the numerical solutions of
(1) and (2), for ¢ < 1.110. Thus the solution is approximately
constant in |A*(c)| and 9y arg(A*(c)), other than very close to the
boundaries. In fact, both the real and imaginary parts of A*(c)
exhibit plane waves:

A* = |A*| cos(D(x, t)) + i|A"| sin(P (x, t)) (3)
where @ (x, t) = K £ x\/1 — |]A*|2 — c|A*|?*t and K is an arbitrary
constant. We refer the reader to [19,22] for details of this mecha-
nism of plane wave generation.

Beyond ¢ = 1.110, the plane waves selected by our boundary
conditions are no longer stable. In a previous study we showed that
when 1.110 < ¢ < 1.576 the instability is convective [19], mean-
ing that small perturbations to the selected plane wave solution
grow in time only while simultaneously moving. In simulations
this results in bands of plane waves propagating in alternating
directions, separated by localised defects known as “shocks” and
“holes”. In contrast, when ¢ > 1.576, the selected plane waves are
absolutely unstable [19], meaning that perturbations to the plane
waves grow pointwise. Correspondingly, simulations show irreg-
ular spatiotemporal dynamics throughout the domain, rather than
plane waves.

This study arose because we observed that when simulating (1)
under separated boundary conditions, starting with various initial
conditions, the dynamics emerging in simulations when 1.110 <
¢ < 1.576 were highly sensitive to the initial conditions, the
domain length, and the value of ¢ (an example is given in Fig. 1 of
[19]). This led us to explore the effects of increasing c only, without
resetting the initial conditions. Initially we increased c in relatively
large increments and again found the appearance of new defect
solutions at unpredictable locations. We then experimented with
changing the increment size, and found that the use of sufficiently
small increments in ¢, between time windows of sufficient length
to remove transient dynamics, revealed a clear structure to the
onset of spatiotemporal chaos (illustrated in Fig. 1). In this study,
we therefore set out to understand this emergent structure.

Our work here extends our previous research into the spa-
tiotemporal dynamics observed in simulations of (1) under a vari-
ety of initial and boundary conditions [14,19,27,28]. What makes
this study different is that we focus on explaining one specific
detailed transition to spatiotemporal chaos. In [19] we showed
how to calculate the numerical threshold for absolutely unstable
plane wave solutions to (1) under the same boundary conditions
as studied here. In [27,28] we showed how to calculate the width
of the band of plane waves emerging behind propagating fronts, a
different plane wave generating mechanism, prior to their sub-
sequent transition to spatiotemporal chaos. There, the initial
perturbations to the plane wave bands were introduced by the
propagating fronts.

In the scenario studied here, the perturbations to the complete
solution (potentially including bands of plane waves) are intro-
duced by the increment in the control parameter c. However, as in
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