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a b s t r a c t

A typical problem with the conventional Galerkin approach for the construction of finite-mode models
is to keep structural properties unaffected in the process of discretization. We present two examples of
finite-mode approximations that in some respect preserve the geometric attributes inherited from their
continuous models: a three-component model of the barotropic vorticity equation known as Lorenz’
maximum simplification equations [E.N. Lorenz, Maximum simplification of the dynamic equations,
Tellus 12 (3) (1960) 243–254] and a six-component model of the two-dimensional Rayleigh–Bénard
convection problem. It is reviewed that the Lorenz-1960model respects both themaximal set of admitted
point symmetries and an extension of the noncanonical Hamiltonian form (Nambu form). In a similar
fashion, it is proved that the famous Lorenz-1963model violates the structural properties of the Saltzman
equations and hence cannot be considered as the maximum simplification of the Rayleigh–Bénard
convection problem. Using a six-component truncation, we show that it is again possible to retain both
symmetries and the Nambu representation in the course of discretization. The conservative part of this
six-component reduction is related to the Lagrange top equations. Dissipation is incorporated using a
metric tensor.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Various models of the atmospheric sciences are based on non-
linear partial differential equations. Besides numerical simulations
of suchmodels, it has been tried over the past fifty years to capture
at least some of their characteristic features by deriving reduced
and much simplified systems of equations. A common way for de-
riving such reducedmodels is based on the Galerkin approach: One
expands the dynamic variables of amodel in a truncated Fourier (or
some other) series, substitutes this expansion into the governing
equations and studies the dynamics of the corresponding system
of ordinary differential equations for the expansion coefficients.
Although the number of expansion coefficients is usually minimal
to allow for an analytic investigation, these reduced models have
been used in order to explain some common properties of atmo-
spheric models.

To the best of our knowledge there is up to now no universal
criterion for the selection of modes or the choice of truncation
of the series expansion. However, at least some cornerstones for
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the Galerkin approach are already settled. It is desirable for finite-
mode models to retain structural properties of the original set
of equations, from which they are derived [1,2]. Such properties
are, e.g., quadratic nonlinearities, conservation of energy and
one or more vorticity quantities in the nondissipative limit and
preservation of the Hamiltonian form.

Recently, an extension of the Hamiltonian structure based on
the idea of Nambu [3] to incorporate multiple conserved quan-
tities in a system representation also came into focus. It was
shown in [4–9] that various equations of ideal hydrodynamics and
magneto-hydrodynamics allow for a formal Nambu representa-
tion. It therefore seems reasonable to derive finite-mode models
that also retain this structure. Moreover, almost all models in the
atmospheric sciences possess symmetry properties. These symme-
tries should thus be taken into account in low-dimensional mod-
eling too, which is an issue in the field of equivariant dynamical
systems (see, e.g., [10]).

The general motivation for this work is that low-order models
are still in widespread use in the atmospheric sciences. It has
been mentioned above that their original purpose was to
identify characteristic features of the atmospheric flow in the pre-
supercomputer era. While the advent of supercomputers partially
renders this aim obsolete, finite-mode models are still valuable
for testing advanced methods in the atmospheric sciences, related
to issues of predictability, ensemble prediction, data assimilation
or stochastic parameterization [11–14]. Such finite-mode models
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offer the possibility for a conceptual understanding of techniques
that are to be used in comprehensive atmospheric numerical
models later on. For such testing issues, in turn, it is essential
to have finite-mode models that preserve the structure of the
underlying set of partial differential equations at least in some
minimal way.

In this paper we give two examples of finite-mode models that
retain the above mentioned features of their parent model. The
first is the three-component Lorenz-1960 model, derived as the
maximum simplification of the vorticity equation [15]. The second
is a six-component extension of the Lorenz-1963 model [16]. The
authors are aware that there exist a great variety of other finite-
mode (Lorenz) models, such as e.g. [17–19], possessing richer
geometric structure and allowing us to address other important
issues in the atmospheric sciences, such as the existence of a
slowmanifold, atmospheric attractors, balanced dynamics and the
initialization problem of numerical weather prediction. Results
in these directions can be found, besides in the original papers
by Lorenz, e.g., in [20–23]. The choice to investigate the Lorenz-
1960 and Lorenz-1963 models, however, is reasonable since the
latter still is one of the most prominent finite-mode models used
in dynamic meteorology for testing issues as reviewed above. As
we are going to show, the Lorenz-1963 model in various respects
does not constitute a sound geometric model, so the derivation of
a revised version of this system appears to be well justified. The
Lorenz-1960 model, on the other hand, has been chosen as it is
the simplest system for which the techniques to be applied in this
paper can be demonstrated.

The Lorenz-1963 model is a dissipative model and as such it
necessarily violates conservative properties. On the other hand this
is a rather typical situation for more comprehensive atmospheric
numerical models too. Usually, the conservative dynamical core of
suchmodels is coupled to a number of dissipative processes such as
friction, precipitation and radiation. Nonetheless, it is a necessary
condition that the numerics for the dynamical core itself do not
violate the structural properties of the underlying conservative
dynamics [24]. Any valuable toy model of the atmosphere should
reflect this, e.g. by consisting of the superposition of a conservative
part and a dissipative part. This is one of the guiding principles for
our derivation of the generalized Lorenz-1963 model.

The organization of this paper is as follows: Properties of
discrete and continuous Nambu mechanics are briefly reviewed
in Section 2. Section 3 includes a description of the Lorenz-1960
model, establishing its Nambu structure and its compatibility
with the admitted point symmetries of the barotropic vorticity
equation. In Section 4, it is shown that the Lorenz-1963 model
is neither compatible with the corresponding Nambu (Hamilton)
form of the Saltzman convection equations nor with its point
symmetries. We hereafter identify the maximum simplification
of the Saltzman convection equations [25] that reflects both
symmetries and the proper Nambu structure of the continuous
model. Finally, in Section 5we sumup our results and discuss some
open questions.

2. Nambu mechanics

Since Nambu mechanics emerged from discrete Hamiltonian
mechanics, it is convenient to start with a short description of
the latter. The evolution equation of a general n-dimensional
Hamiltonian system is given by

dF
dt

= {F ,H} ,

where F = F(zi) is an arbitrary function of the phase space
variables zi, i = 1, . . . , n, H is the Hamiltonian function and {., .}
is a Poisson bracket, which satisfies bilinearity, skew-symmetry

and the Jacobi identity. For discrete Hamiltonian systems, the
Poisson bracket is characterized by an antisymmetric rank two
tensor that can depend on the coordinates of the underlying phase
space. In modern Hamiltonian dynamics, this tensor is allowed to
be singular, leading to the notion of a Casimir function C , which
Poisson-commutes with all arbitrary functions G(zi)

{C,G} = 0, ∀G.

Setting G = H , it follows that every Casimir is in particular also a
conserved quantity.

Guided by Liouville’s theorem stating volume-preservation in
phase space, Nambu [3] proposed a formalism for discrete me-
chanical systems allowing multiple conserved quantities to deter-
mine, at the same level of significance, the evolution of a dynamical
system. More precisely, let us consider a point mechanical system
with n degrees of freedom and n−1 functionally independent con-
served quantities Hj, j = 1, . . . , n − 1. The evolution equation for
an arbitrary function F according to Nambu is
dF
dt

=
∂(F ,H1,H2, . . . ,Hn−1)

∂(z1, z2, . . . , zn)
=: {F ,H1,H2, . . . ,Hn−1} .

The above bracket operation is called a Nambu bracket, which due
to the properties of the Jacobian is non-singular, multi-linear and
antisymmetric under the exchange of any two arguments. It was
demonstrated in [26] that a Nambu bracket also fulfills a general-
ization of the Jacobi identity, which reads

{{F1, . . . , Fn−1, Fn}, Fn+1, . . . , F2n−1}

+{Fn, {F1, . . . , Fn−1, Fn+1}, Fn+2, . . . , F2n−1}

+ · · · + {Fn, . . . , F2n−2, {F1, . . . , Fn−1, F2n−1}}

= {F1, . . . , Fn−1, {Fn, . . . , F2n−1}} (1)

for any set of 2n − 1 functions Fi. Various discrete models that al-
low for a Nambu formulation were identified, e.g. the free rigid
body [3], a system of three point vortices [5], and the conservative
Lorenz-1963 model [27], which is discussed in some detail below.

It appears that the application of ideas of discrete Nambu
mechanics to field equations was first considered in [28] (and
even earlier in a talk [29]), and later independently by Névir and
Blender [6]. It was noted that the singularity of many continuous
Poisson brackets of fluid mechanics may be formally removed
by extending them to tribrackets using explicitly one of their
Casimir functionals as an additional conserved quantity. That
is, despite the fact that partial differential equations represent
systems with infinitely many degrees of freedom, up to now there
only exist models using one additional conserved quantity. This
way, the term continuous Nambu mechanics (referring to a Nambu
representation of field equations) is at once misleading, though it
is already used in several papers.

The restriction to tribrackets may be traced back to the
underlying Lie algebras on which the Poisson brackets in Eulerian
variables are based on [30,31]. Hence, the fixed relation between
the dimension of the phase space and the number of conserved
quantities used for a system representation is lost in continuous
Nambumechanics. In the atmospheric sciences, this generalization
is called energy-vorticity theory, as the employed Casimir functional
is frequently related to some vortex integral. Since in the
atmospheric sciences the evolution of the rotational wind field
is dominant over different scales, the energy-vorticity description
may be well suited for a better understanding of e.g. turbulence.
Among others, models that can be cast into energy-vorticity form
include the inviscid non-divergent 2d and 3d barotropic vorticity
equations, the quasi-geostrophic potential vorticity equation and
the governing equations of ideal fluid mechanics as well as
equations of magnetohydrodynamics [4,5,32,7,8].

The main problemwith continuous Nambumechanics is that it
is up to now not clear whether it is possible to state an appropriate
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