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Abstract

The construction of the∗-product proposed by Fedosov is implemented in terms of the theory of
fibre bundles. The geometrical origin of the Weyl algebra and the Weyl bundle is shown. Several
properties of the product in the Weyl algebra are proved. Symplectic and abelian connections in the
Weyl algebra bundle are introduced. Relations between them and the symplectic connection on a
phase spaceM are established. Elements of differential symplectic geometry are included. Examples
of the Fedosov formalism in quantum mechanics are given.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The standard formulation of quantum mechanics in terms of a complex Hilbert space
and linear operators is mainly applied for systems, whose classical limit may be de-
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scribed on a phase spaceR
2n. There are two reasons for this situation: the fundamen-

tal operators ˆqi, p̂i, i = 1, . . . ,2n, are well defined by the Dirac quantization scheme
[1] only in the case ofR2n, and the operator orderings are based on the Fourier
transform[2–4].

Unless we agree to weaken the foregoing assumptions[5] to deal with other
quantum systems it is necessary to use geometric quantization[6,7] or deformation
quantization.

Classical mechanics is a physical theory which works perfectly on arbitrary differential
manifolds. From this reason shortly after presenting a standard version of quantum theory,
researchers began to look for an equivalent formulation of quantum mechanics based on
differential geometry. The first complete version of quantum theory in the language of
the theory of manifolds appeared in the middle of the XXth century, when Moyal[8]
using previous works by Weyl[9], Wigner[10] and Groenewold[11] presented quantum
mechanics as a statistical theory. His results are only valid for the caseR

2n. However, the
paper by Moyal contains the seminal ideas about deformation quantization, since the main
result of this work is the substitution of the point-wise product of functions in phase space
for a new product which is a formal power series in�.

A modern version of Moyal’s deformation quantization on an arbitrary differential man-
ifold was proposed by Bayen et al.[12] in 1978. The mathematical structure of this formu-
lation of the quantum theory is based, like Hamiltonian classical mechanics, on differential
geometry of symplectic spaces. Observables are smooth real functions on a phase space and
states are represented by functionals. Macroworld appears in this formalism as the limit of
the quantum reality for the Planck constant� tending to 0+.

The list of axioms constituting deformation quantization looks as follows:

(i) a state of a physical system is described on a 2n-dimensional phase spaceM,
(ii) an observable is a real smooth function onM,

(iii) for every complex-valued smooth functions (f, g, h) of C∞(M) the∗-product fulfills
the following conditions:

(a) f ∗ g =
∞∑
t=0

(
i�

2

)t

Mt(f, g),

whereMt(·, ·) is a bidifferential operator onM (see definition later, formula
(1.1)).

(b) The elementM0 represents the ‘usual’ commutative product of functions i.e.
M0(f, g) = f · g.

Thus, at the classical limit
lim
�→0+

f ∗ g = f · g.
(c) The quasi-Dirac quantization postulate holds

M1(f, g)−M1(g, f ) = 2{f, g}P,
where{·, ·}P stands up for Poisson brackets.

(d) Associativity also holds∑
t+u=s

(Mt(Mu(f, g), h)−Mt(f,Mu(g, h))) = 0 ∀s ≥ 0.
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