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Dynamical models with degrees of freedom ruled by linear and affine groups have been 
discussed in various aspects by many people, e .g.O.I .  Bogoyavlensky [7] and J. J. Stawianowski 
[4, 5]. We concentrate on models with degenerate dimension, when the configuration space con- 
sists of injections from IR m into R n . Equations of motion are derived with special stress on the 
stationary solutions (stationary ellipses). The isotropic models are related in an interesting way 
to the theory of Grassmann and Stiefel manifolds. 
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1. Introduction 

Mechanics of affinely-rigid body was developed in a series of publications 
[1, 2, 4-8] within the framework both of Hamiltonian and dissipative models. 
Roughly speaking, affinely-rigid body is a system of material points (discrete or 
continuous) moving in such a way that all affine relations between its constituents 
remain invariant, thus, the material straight lines continue to be straight lines, 
their parallelism is conserved, and the ratios of segments on the same material 
straight line are conserved. In the mentioned publications the problem was discussed, 
generally, in n dimensions, although, of course, only the special cases n = 1, 2, 3 
are of direct physical interest. But from the purely mathematical point of view it 
is just more convenient to study the general situation, i.e. for an arbitrary value 
of n. Let us mention, incidentally that there exists an interesting and unexpected 
link between some n-dimensional models of affinely-rigid body and one-dimensional 
n-body problems, in particular, with the dynamics of integrable lattices studied by 
Calogero [9], Moser [10, 11], Sutherland, and others. 

The model of systems with affine constraints is applicable in a wide spectrum 
of problems, like macroscopic elasticity (when the length of excited waves is of 
the same order as the body size; a kind of tidal motion), media with microstructure 
(e.g. the Eringen micromorphic continua), nuclear and molecular dynamics, and 
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dynamics of astrophysical objects, including the theory of the shape of the Earth. 
The last problem has a very long history starting from Newton himself through 
Riemann, Kronecker and Dedekind till Chandrasekhar [6] almost recently. Obviously, 
the microscopic problems require quantum treatments. 

Various mathematical aspects of the problem were deeply investigated by M. 
Roberts, C. Wulff [12, 13], A. A. Burov [16, 17], S. Ya. Stepanov [17], D. P. 
Chevallier [14, 16], and others. This covers, in particular, problems like relative 
equilibria and relative periodic orbits. 

Very interesting aspects of affine motion within the context of hydrodynamics 
and astrophysics were studied by O. I. Bogoyavlenskij [7]. There were used some 
very sophisticated methods of the theory of dynamical systems. Astrophysical studies 
made by O. I. Bogoyavlenskij had to do with slightly different problems than our 
affine constraints imposed on the system motion. Namely, he was searching for 
affine-modes solutions of unconstrained problems. 

2. General formulation 

Affine motion consists of spatial translations, rotations, and homogeneous de- 
formations. On the purely kinematical level the metric tensor is superfluous when 
defining degrees of freedom. The physical space may be metrically amorphous 
and endowed only with affine (Tales) geometry. The metric tensor becomes essen- 
tial when we construct dynamical models, although, as we show, there exist also 
metric-free models. They present at least academic mathematical interest and might 
seem relatively exotic from the physical point of view. Nevertheless some physical 
applications are not excluded [8]. 

When some Cartesian coordinates and reference coordinates are fixed, the con- 
figuration space of an n-dimensional affinely-rigid body may be identified with the 
affine group 

Q = GAf (n, ~)  _~ GL (n, R) ®s ~n. 

In the above semi-direct product the factor R n refers to the center of mass motion, 
i.e. translational motion (physical space identified with ~n), whereas 

Qint = GL (n, ~ ) ,  

i.e. the general linear group describes internal degrees of freedom (one says rather 
about degrees of freedom of the relative motion in mechanics of extended systems). 
In the case of continuous bodies one should use rather the connected component 
of unity in GL(n, R), i.e. the group of proper linear transformations GL+(n, N) 
(positive determinants). 

In more sophisticated terms, it is customary to use two logically different affine 
spaces (M, V) and (N, U), i.e. respectively, the physical space M and the material 
space N. Here V and U denote, respectively, the linear space of translations in M 
and N. The configuration space is identified with the manifold Q = AfI (N, M) of 
affine isomorphisms of N onto M. The co-moving mass distribution is described 
by a fixed, time-independent positive measure /z on N. When /z(N) < ~ ,  the 
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