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h i g h l i g h t s

• The connection between the long-wave asymptotic theories for waveguides and periodic media is discussed.
• Similarity of trapped modes for both cases is emphasised.
• Both high-frequency and low-frequency regimes are addressed.
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a b s t r a c t

This article explores the deep connections that exist between the mathematical repre-
sentations of dynamic phenomena in functionally graded waveguides and those in peri-
odic media. These connections are at their most obvious for low-frequency and long-wave
asymptotics wherewell established theories hold. However, there is also a complementary
limit of high-frequency long-wave asymptotics corresponding to various features that arise
near cut-off frequencies inwaveguides, including trappedmodes. Simultaneously, periodic
media exhibit standing wave frequencies, and the long-wave asymptotics near these fre-
quencies characterise localised defectmodes alongwith other high-frequency phenomena.
The physics associated with waveguides and periodic media are, at first sight, apparently
quite different, however the final equations that distill the essential physics are virtually
identical. The connection is illustrated by the comparative study of a periodic string and a
functionally graded acoustic waveguide.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

For longwaveswithin awaveguide, at low frequency, intuition suggests that (for waveguides governed by the Helmholtz
equation with Neumann boundary conditions) the waveguide behaves effectively as a string; when viewed from afar the
guide is long and thin. Similarly, a string composed of periodic elements where the length scales associated with the
periodicity are much less than the wavelength of the excitation also intuitively behaves as some effective string. In both
cases the word ‘‘effective’’ is rather vague, but as we shall see this can be made precise through an asymptotic approach
involving two scales; the thickness of the guide or periodicity scale and the length-scale of the guide or overall string. As
we shall see an application of multiple scales leads rapidly to an effective equation for these two problems that can be
simultaneously treated.

Perhaps less obviously one can also consider high-frequency wave propagation which almost immediately equates to
short wavelength, as one typically thinks of waves within a bulk medium, and asymptotic techniques for waveguides based
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Fig. 1. (a) Functionally graded waveguide and (b) periodic string.

upon theWKBJ ansatz are popular and versatile [1–4]. However, the imposition of boundaries such as those of a waveguide
can alter this intuitive viewpoint and long-wave solutions are also possible. Taking a straight, constant thickness, isotropic
waveguide a natural approach is to seek modal solutions and create dispersion curves. As is well-known (e.g. see [5])
there are an infinite set of discrete modes each with a cut-off frequency. For each mode the cut-off frequency delineates
evanescent, exponentially decaying, solutions from thepropagatingmodes. If one is exactly at the cut-off frequency (possibly
at high-frequency) then this is called thickness resonance and thewave simply bounces back and forth across thewaveguide
and neither propagates to the left or right. The wavelength of this mode along the guide is actually infinite and close to cut-
off the wavelength is therefore large. This observation motivates a general asymptotic methodology, summarised in the
books [6–8] in the context of thin elastic structures of arbitrary shape. In particular for the case of flat or axisymmetric
waveguides with either weakly bent, bulging or thinning walls, [9–11] ordinary differential equations (ODEs) for trapped
modes (solutions with finite energy that decay exponentially at infinity) emerge. A key point is that in the deformed
region one can shift the local cut-off frequency such that waves propagate locally, but are cut-off away from this region,
thereby trappingmodes. The simple ODE representation is then very powerful compared to large scale numerical eigenvalue
calculations that lack insight.

A complementary, and apparently disconnected, area in wave propagation is that of waves passing through periodic
media; this is important in solid-state physics [12], photonics [13] and the emergent areas of metamaterials [14]. For
infinite perfectly periodic media, consisting of elementary cells that repeat, one can focus attention on a single elementary
cell; quasi-periodic Floquet–Bloch boundary conditions describe the phase-shift as a wave moves through the material and
dispersion relations are then deduced that relate the Bloch wavenumber, the phase-shift, to frequency. The eigensolutions
that emerge are the Bloch modes, and when these eigensolutions are perfectly in-phase or out-of-phase across the cell
then standing waves exist and the frequencies are then called standing wave frequencies (these frequencies can be high).
There exist bands of frequencies, called band-gaps, in which propagating Bloch modes do not exist and in which the modes
are evanescent. If the perfectly periodic lattice is perturbed then localised defect states can occur, these exponentially
decay with distance, and the behaviour is eerily reminiscent of the trapped modes in a waveguide. Indeed at these high
standing wave frequencies one can have ‘‘thickness resonance’’ within each elementary cell and the real wavenumber (not
the Bloch wavenumber) is infinite as the wave itself is not propagating left or right. Asymptotic techniques based around
high-frequency long-wave asymptotics have recently been developed [15] and ODEs in 1D periodic media (or PDEs in 2D)
again emerge; this approach alsoworks formicrostructured discrete [16] or frame-likemedia [17]. The basic idea for periodic
media is to replace the complicatedmicrostructuredmediumwith an equivalent, effective, continuumon amacro-scale, that
is, one wishes to homogenise the medium even when the wavelength and microstructure may be of similar scales.

We will illustrate the connection between the waveguide problem and periodic media by considering, in parallel,
two model problems: A functionally graded acoustic waveguide and a periodic piecewise string. These are algebraically
completely tractable and are explicitly solved in Section 2. The asymptotics of the low frequency model follow in Section 3
and the linear asymptote emerges together with an effective string equation for both examples. The less intuitive case of
high frequencies is dealt with in Section 4, there are only minor differences between the two examples but both feature a
rapidly oscillating solution on one scalemodulated by a long-scale function that satisfies an effective equation posed entirely
upon the long scale. Explicit asymptotic results are found and compared with exact dispersion relations. The asymptotic
techniques are also applied to deformed layered waveguides (Section 5). Finally, we gather together some concluding
remarks in Section 6.

2. Formulation

2.1. Functionally graded waveguide

Let us consider a straight waveguide, of constant width, in |y| < h and |x| < ∞ with Neumann boundary conditions
upon thewaveguide walls, see Fig. 1(a). If the waveguide is elastic and excited by out-of-plane oscillations, so there is shear-
horizontal (SH) polarisation, then the governing equation is that of acoustics with

∇
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ω2

ĉ2(y/h)


u(x, y) = 0. (1)

Notablywehave allowed thewave speed, ĉ , to vary across thewaveguide andwe take a referencewave speed to be c0 = ĉ(0)
so ĉ(y/h) = c0c(y/h); the boundary condition is that ∂u/∂y = 0 on y = ±h. In (1) the frequency is denoted by ω.
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