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a b s t r a c t

This paper is a review of the theoretical framework for the application of radiative transfer
equations to structural dynamics and acoustics. It is shown that under the assumption
of geometrical acoustics and when the phase of rays is neglected, a representation of a
sound field in terms of incoherent fictitious sources provides a sufficiently large framework
to embody diffuse as well as specular reflection, steady-state or transient phenomena
and even diffraction. Two special cases are mentioned. The so-called radiosity method in
acoustics corresponds to a purely diffusing boundary and statistical energy analysis when
the sound field is diffuse.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The interest of the scientific community in high frequency methods applied to vibro-acoustics is relatively recent
compared to other fields of physics such as electrodynamics or acoustics. It seems that raymethods have not been as popular
in structural dynamics where most engineers prefer to use softwares based on the governing equations solved by the finite
element method.

However, this ‘brute force’ approach of vibro-acoustics rapidly encounters a practical limitation. When the frequency
increases, the number of natural modes increases. Even for a numerical model of order of tens of millions of degrees of
freedom, a reasonable task on current computers, the maximum analysis frequency is still too low and does not permit the
entire audio frequency band to be covered. This limitation is particularly unfavorable in the automotive industry or for larger
structures such as aircraft or launchers which may contain millions of natural modes within the audio frequency band [1].
Furthermore, it might be emphasized that the sensitivity of these computations is poor which raises the question of how
useful it is to know the ‘exact’ sequence of natural modes for systems having a large number of modes.
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For these reasons, statistical energy analysis [2] (SEA) has been developed for fifty years. Introduced early in the sixties by
R.H. Lyon [3] andmany other authors [4–6], this theory is based on statistical concepts and applieswhen sources are random,
uncorrelated andwhen the number of modes is large enough to be considered as a statistical population. Then under certain
circumstances [7], sound/vibration reaches a state of diffuse field and equipartition of modal energy (an interesting method
to dispense with equipartition is proposed in Refs. [8,9]). Then, a simple law emerges: the energy exchange between two
coupled subsystems is proportional to the difference in their modal energies. This has served as a foundation to interpret
the modal energy as a ‘vibrational temperature’ and the coupling power proportionality as a thermal law. SEA follows on
from room acoustics and Sabine’s formula and as such could be considered as a theory of statistical vibroacoustics [10] in
the same way as statistical mechanics, statistical electromagnetism and so on.

Among numerous attempts to relax the more restrictive assumptions of SEA, several methods aim to predict the
repartition of vibrational energywithin subsystemswhere the field is not diffuse. But the behavior of local energy quantities
is more subtle than appears at first sight [11–13] and it is generally not possible to obtain a closed set of equations involving
energy variables without introducing strong assumptions.

To circumvent this difficulty, it has been proposed by several authors [14–25] to start from an integral representation
of the vibrational field and to calculate a quadratic quantity by neglecting to various degrees the coherence between the
boundary sources. When all sources are incoherent, it results in a boundary integral equation for energy that may be solved
by a collocation or the Galerkin method. Although they have been developed in various contexts, all these methods suggest
more or less the idea that vibrational energy propagates in structures like radiant thermal energy. This thermal analogy
is clearly not equivalent to the thermal conductivity proposed in other respects (see Refs. [26,27,23] for a discussion on
this point). The radiative transfer analogy is more apparent in room acoustics with the so-called radiosity method [28–32].
Furthermore, when the vibrational field tends to be diffuse, it is found that the coupling power proportionality of statistical
energy analysis is obtained as a limiting case [33]. In this regard, let us also mention the recently proposed method called
dynamical energy analysis which investigates the gap between full ray-tracing and statistical energy analysis [34–36].

The purpose of this paper is to review the theoretical framework of an extension of the radiosity method to specular
reflection and diffraction which may serve as a basis for a generalization of statistical energy analysis. The outline of the
paper is as follows. In Section 2 we introduce some generalities about representation of a vibration field in terms of radiant
energy supplied by actual and fictitious sources. In Section 3, the balance equations are derived governing the emissive
power of fictitious sources. The special case of diffuse reflection and the radiosity equation is introduced in Section 4. Two
problems which enlarge the scope of classical radiosity are then discussed, specular reflection in Section 5 and diffraction
in Section 6. The paper finishes with some concluding remarks.

2. Energy representation of a wave field

The laws of radiative energy transfer are based on two principles; the linear superposition principle and Huygens’
principle.

If the vibrational field is sufficiently ‘disordered’ then wemay neglect all correlations between rays and energy variables
turn out to be well-suited to describe the field state. Two rays emanating from a single source with a slightly different
direction take different paths and are subjected to different events such as reflection, diffraction, diffusion etc. before
eventually reaches the same receiver point. They rapidly ‘forget’ their phase so that after traveling a long distance, their
energies may be added signifying that interference effects can be neglected.

Huygens’ principle states that each point of reflection, refraction, diffraction etc. behaves like a secondary source from
which emanate spherical waves. A more modern form is the so-called Helmholtz–Kirchhoff formula or any representation
formula by Green’s function. The principle of all these formulas is that in the presence of an obstacle, the field is unchanged
if one removes the obstacle and replaces it by appropriate fictitious sources. The field is therefore the sum of a direct field
(the field that would be without the obstacle) and the field produced by fictitious sources.

Let Ω be a domain whose regular boundary is Γ and whose set of diffracting points is ∆. We admit that Ω may contain
volume sources ρ. By virtue of Huygens’ principle, we also put surface sources σ onΓ and diffraction sources λi on∆ (Fig. 1).
The energy density W at any point x and time t is given by (assuming incoherence),
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where R = |x − y| is the source–receiver distance, v = (x − y)/R the source–receiver direction, t ′ = t − R/c the retarded
time and c the sound speed (Fig. 1). The domain sources ρ have been assumed omnidirectional but σ and λi depend on the
emission direction v.

Inside the domain, we may also introduce the specific radiative intensity I(x, v, t) defined as the energy flow per unit
solid angle and unit area normal to the rays. While the energy densityW only depends on the position x and the time t , the
specific intensity depends in addition on the direction vector v. Considering a position x and an infinitesimal solid angle dω
about a direction v, the specific intensity is,
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