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a b s t r a c t

In this paper we derive novel approximations to trapped waves in a two-dimensional
acoustic waveguide whose walls vary slowly along the guide, and at which either Dirichlet
(sound-soft) or Neumann (sound-hard) conditions are imposed. The guide contains a single
smoothly bulging region of arbitrary amplitude, but is otherwise straight, and the modes
are trapped within this localised increase in width.

Using a similar approach to that in Rienstra (2003) [13], a WKBJ-type expansion
yields an approximate expression for the modes which can be present, which display
either propagating or evanescent behaviour; matched asymptotic expansions are then
used to derive connection formulae which bridge the gap across the cut-off between
propagating and evanescent solutions in a tapering waveguide. A uniform expansion is
then determined, and it is shown that appropriate zeros of this expansion correspond to
trappedmodewavenumbers; the trappedmodes themselves are then approximated by the
uniform expansion. Numerical results determined via a standard iterativemethod are then
compared to results of the full linear problem calculated using a spectral method, and the
two are shown to be in excellent agreement, even when ϵ, the parameter characterising
the slow variations of the guide’s walls, is relatively large.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

It iswell-established that vibrational energy can become trappedwithinwaveguides by local changes in the guide’swidth
(e.g., [1,2]) or curvature (e.g. [2–5]), resulting in what are termed trapped modes: localised solutions of the homogeneous
time-harmonic boundary-value problem. In this paper, we focus on the trapping that can occur within a straight two-
dimensional acoustic waveguide with a localised increase in width (i.e., a bulge). Physically, this geometry is capable of
trapping waves since a particular mode may be evanescent in the narrower uniform region to either side of the bulge, but
propagating in a uniform guide ofwidth equal to the bulgewidth. Thus it is possible for a solution to existwhich is oscillatory
within the bulge, but decaying outside it, i.e., a trapped wave, the trapped mode frequency then lying between the cut-off
frequencies associated with the width of the bulge and the width of the surrounding straight region.

Analytical determination of trapped wave frequencies and the associated modal structure is generally difficult, but if the
width of the waveguide is slowly-varying, in the sense that the length-scale ϵ−1 over which the width changes satisfies
0 < ϵ ≪ 1, then this small parameter can be used to develop an asymptotic scheme. In a recent series of papers [1,2],
an asymptotic procedure is developed which allows calculation of the trapped wave frequencies (or, more precisely, the
O(ϵ) correction away from the cut-off frequencies) as solutions of a simple ODE eigenvalue problem, given the additional
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geometrical constraint that the amplitude of the bulge is O(ϵ2). (This amplitude scaling means that the solution’s change in
character from propagating to evanescent is not localised.) The ODE eigenvalue problem is then accurately and efficiently
solved using a spectral method.

A complementary problem to determining trappedmodes within a slowly-varying waveguide is to instead determine an
approximation to the types of propagating modes which can exist therein. This is commonly-achieved using variations on
the general WKBJ ansatz φ = AeiP/ϵ (see [6–8] for examples of using the approximation in problems in which the curvature
rather than the width varies slowly). The approximation was used in [9] to model surface gravity water waves above a
slowly-varying bed, andmodified in [10] to include an expansion of the phase P in powers of ϵ. In [6–8],A and P are expanded
in powers of ϵ and are functions of both longitudinal and transverse coordinates, which allow A and P to be identified as the
real amplitude and phase, respectively. The expansion of P also has the effect of allowing the approximation to be uniform
in range. The expressions derived are referred to as quasi-modes in [6–8], are uncoupled, and to first order coincide with
the adiabatic approximation in which gradients in waveguide width are ignored, and the modes are given locally by the
separable solutions which exist in a uniform guide of the same local width.

A related body of literature exists concerning sound propagation in three-dimensional slowly-varying lined flow ducts
(e.g. [11–14]). In [11–13], a multiple scales analysis reveals the form of the modes which can be present in the duct,
and in [13] connection formulae are derived for the turning point at the transition between propagating and evanescent
behaviour. In [14], a uniform expansion is derived for a mode undergoing cut-on cut-off transition.

In this paper, we use an expansion similar to that which yields the quasi-mode expressions to instead examine the
trapping problem. We first derive a version of quasi-modes which allows both propagating and evanescent behaviour,
depending on whether the wavenumber is greater or less than the local cut-off. The resulting expression is similar to that
derived in [11–13] for sound propagation in three-dimensional slowly-varying lined flow ducts. These expressions stem
from a WKBJ-type ansatz φ = AeP , with A and P both functions of longitudinal and lateral coordinates, and A expanded as
A = A0 + ϵA1 + · · · but P written as simply P = ϵ−1P−1, since higher-order terms in the expansion of P can be absorbed
into A. The ‘‘phase’’ P is allowed to be real or imaginary to produce either propagating or evanescent behaviour.

Now, a mode trapped within a bulge is oscillatory in nature within the centre of the bulge, and then changes in character
to an evanescent wave as the narrower portion of the guide is reached, the point at which this character change occurs
being an example of a turning point (see, for example [15]), at which in particular the expressions derived for the quasi-
modes are not valid. However, formulae which connect the propagating and evanescent waves across the turning point can
be obtained via the method of matched asymptotic expansions (in a fashion similar to that used in [13]). Motivated by the
solution appropriate in the vicinity of the turning point, a uniformly valid expansion is then derived which includes the
two quasi-mode forms as limiting behaviour. The ansatz adopted to derive this uniform expansion is similar to that used to
calculate higher order uniform approximations to ODE turning point problems (see [15]), and the resulting expansion is also
similar to that derived in [14]. Determining appropriate zeros of this uniform expansion via a standard iterative procedure
then furnishes highly accurate approximations to the trapped wave frequencies and modal structures.

We note that the strengths of the procedure presented here include that the amplitude of the bulge is arbitrary (so long
as the guide’s walls remain slowly-varying); the determination of the trapped wavenumbers is ultimately straightforward,
simply requiring the application of a standard iterative scheme to a single nonlinear equation, and once the trapped
wavenumbers are determined, the uniform expansion immediately offers an analytic expression for the structure of the
eigenmode.

The paper proceeds as follows. Throughout, we derive results for the sound-soft problem and then state the
corresponding sound-hard result. In Section 2, we derive the quasi-mode expressions which allow both propagating and
evanescent behaviour. Then we consider the reflection of one such propagating quasi-mode at a taper in a waveguide, first
using a matched asymptotics procedure to connect the propagating and evanescent expansions, and then via a uniform
expansion.

In Section 3, we show how the uniform approximation to the taper problem can be used to derive approximations
to the corresponding eigenvalue problem, and then compare a selection of these results to numerical approximations to
the solution of the full linear problem for the sound-soft case, calculated using a spectral method. Finally, in Section 4 we
conclude and offer some suggestions for further work.

2. Waves in a two-dimensional acoustic waveguide of slowly-varying width

2.1. Preliminaries

We wish to determine the values of k̄ giving a non-trivial solution to the homogeneous boundary-value problem

φ̄x̄x̄ + φ̄ȳȳ + k̄2φ̄ = 0 (−∞ < x̄ < ∞,−h̄−(x̄) < ȳ < h̄+(x̄)), (2.1)

φ̄ → 0 as x̄ → ±∞, (2.2)

supplemented by either the Dirichlet (sound-soft) boundary conditions

φ̄ = 0 (−∞ < x̄ < ∞, y = ±h̄±(x̄)) (2.3)
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