Contents lists available at ScienceDirect

Free

Free Radical Biology and Medicine

journal homepage: www.elsevier.com/locate/freeradbiomed

Original Contribution

The kinetics of the reaction of nitrogen dioxide with iron(II)- and iron(III) cytochrome c

85

Anastasia S. Domazou ^{a,*}, Lidia Gebicka ^b, Joanna Didik ^b, Jerzy L. Gebicki ^b, Benjamin van der Meijden ^{a,1}, Willem H. Koppenol ^a

^a Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich CH-8093, Switzerland ^b Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, 93-590 Lodz, Poland

ARTICLE INFO

Article history: Received 29 May 2013 Received in revised form 13 December 2013 Accepted 9 January 2014 Available online 18 January 2014

Keywords: Cytochrome c NO2⁵ N-acetyltryptophan amide Peroxynitrite CO2 Protein radical Amino acid radical Tyrosine radical Tyrotophan radical Kinetics Rate constant Pulse radiolysis Free radicals

ABSTRACT

The reactions of NO₂ with both oxidized and reduced cytochrome *c* at pH 7.2 and 7.4, respectively, and with *N*-acetyltyrosine amide and *N*-acetyltryptophan amide at pH 7.3 were studied by pulse radiolysis at 23 °C. NO₂ oxidizes *N*-acetyltyrosine amide and *N*-acetyltryptophan amide with rate constants of $(3.1 \pm 0.3) \times 10^5$ and $(1.1 \pm 0.1) \times 10^6$ M⁻¹ s⁻¹, respectively. With iron(III)cytochrome *c*, the reaction involves only its amino acids, because no changes in the visible spectrum of cytochrome *c* are observed. The second-order rate constant is $(5.8 \pm 0.7) \times 10^6$ M⁻¹ s⁻¹ at pH 7.2. NO₂ oxidizes iron(II)cytochrome *c* with a second-order rate constant of $(6.6 \pm 0.5) \times 10^7$ M⁻¹ s⁻¹ at pH 7.4; formation of iron(III) cytochrome *c* proceeds via a mechanism in which 90% of NO₂ oxidizes the amino acid residues to the corresponding radicals, which, in turn, oxidize iron(II). Iron(II)cytochrome *c* is also oxidized by peroxynitrite in the presence of CO₂ to iron(III)cytochrome *c*, with a yield of ~60% relative to peroxynitrite. Our results indicate that, in vivo, NO₂ will attack preferentially the reduced form of cytochrome *c*.

© 2014 Elsevier Inc. All rights reserved.

Cytochrome *c* is a small heme protein that has two physiological roles. It transfers electrons from cytochrome c_1 to cytochrome *c* oxidase in the respiratory chain and serves as a cytoplasmic apoptosis-triggering agent. Cytochrome *c* reacts with various inorganic and organic radicals [1], with inorganic complexes [2], and with a number of biologically important molecules, such as ascorbate [3] and

peroxynitrite [4]. Electron transfer takes place at the solvent-accessible heme edge; in the case of negatively charged oxidants and reductants the reaction is favored [2,5] by the evolutionarily conserved asymmetric charge distribution of cytochrome c [6,7]. The heme iron is not accessible to the solvent and, thus, participates in electron transfer by an outer-sphere mechanism.

Abbreviations: trivial terms (in italic) and systematic names for the compounds used in this work are AA* amino acid radical; ABTS, 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate); ABTS*-, radical of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate); BTS*-, radical, trinxidocarbonate (*1-); COs*-, radical, radical, trinxidocarbonate (*1-); COs*-, radical, radical,

^{*} Corresponding author. Fax: +41 446321090.

E-mail address: domazou@inorg.chem.ethz.ch (A.S. Domazou).

Present address: Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland.

 $^{0891-5849/\$-}see \ front\ matter @\ 2014\ Elsevier\ Inc.\ All\ rights\ reserved. http://dx.doi.org/10.1016/j.freeradbiomed.2014.01.014$

It has been shown that Tyr residues in cytochrome *c* are nitrated when exposed to peroxynitrite [8] or in the presence of H_2O_2 and NO_2^- via a peroxidase-like mechanism [9,10]. Nitrated cytochrome *c* is unable to support electron transfer in the respiratory chain [8,11]. Very recently, Silkstone et al. [12] postulated that NO_2^- -formed during the autoxidation of NO[•] in vitro—oxidizes iron(II)cytochrome *c* to iron(III)cytochrome *c*; they were able to fit their experimental results by a kinetic model assuming a rate constant of $3 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ for this reaction.

NO² has a standard electrode potential, $E^{\circ}(NO^{-}_{2}/NO^{-}_{2})$, of 1.04 V vs NHE [13] and is expected to participate in many pathophysiological processes [14,15]. The principal pathway for the formation of NO² in vivo is the reaction of peroxynitrite (ONOO⁻/ONOOH. $pK_a = 6.8$) with CO₂ [16-20]. Other potential endogenous reactions that lead to the formation of NO_2^{\bullet} are oxidation of NO_2^{-} by heme proteins [21,22] and in particular by proteins with peroxidase activity [23]. In vivo, formation of NO₂ by NO[•] autoxidation is negligible in aqueous domains [24]. NO₂ can react with various compounds via addition to double bonds [25,26], hydrogen abstraction [27], or electron transfer mechanisms [28]. It oxidizes Tyr, Trp, and Cys with moderate rates, a number of proteins, and the anions of the unsaturated fatty acids linoleic and arachidonic acid [29,30]. We have shown that NO₂[•] oxidizes iron in nitrosyl(II) hemoglobin and nitrosyl(II)myoglobin [31]. NO₂ also rapidly recombines with other radicals. The very fast reaction of NO₂[•] with $O_2^{\bullet-}$ leads to the formation of the strong oxidizing agent peroxynitrate [32], whereas reaction of NO_2^{\bullet} with tyrosine, TyrO^{\bullet}, or tryptophan, Trp[•], radicals in peptides or proteins produces nitrotyrosine or nitrotryptophan, respectively [30,33]. Nitrated proteins have been detected in vivo under many pathological conditions [14].

ONOO⁻ reacts rapidly with CO₂ and forms to a limited extent NO₂ and CO₃⁻. We have already reported that CO₃⁻ reacts with both iron(III)- and iron(II)cytochrome *c* with rate constants of 5.1×10^7 and 1.1×10^9 M⁻¹ s⁻¹, respectively [34]. It reacts both with the amino acid residues of iron(III)cytochrome *c* and with the exposed edge of the heme in iron(II)cytochrome *c*. The latter reaction results in a quantitative oxidation of the iron(II).

Here we report on the reaction of NO₂ with both the reduced and the oxidized form of cytochrome c and further with *N*-ac-Tyr-NH₂ and *N*-ac-Trp-NH₂. In particular, we measured the corresponding rate constants and we investigated whether the heme or the protein moiety is preferentially attacked.

Experimental procedures

Materials

Cytochrome *c* from horse heart (96%, not prepared with trichloroacetic acid) and ABTS were supplied from Sigma and *N*-ac-Tyr-NH₂ and *N*-ac-Trp-NH₂ were from Bachem. NaNO₂ (99.999% on a trace metal basis) was from Aldrich Fine Chemicals or from Sigma, NaH₂PO₄ and Na₂HPO₄ (99.99%) were from POCH SA, and KH₂PO₄ and K₂HPO₄ (Suprapur 99.99%) were from Merck. The ascorbic acid (> 99.9999) and NaNO₃ (puriss. p.a.) were from Fluka, and K₃Fe(CN)₆ (puriss. p.a.) was from Sigma–Aldrich. We synthesized peroxynitrite by the method of Bohle et al. [35]. Water was purified with a Millipore Milli-Q unit.

Cytochrome c solutions

Stock solutions of iron(III)- or iron(II)cytochrome *c* in 10 mM sodium or 0.10 M potassium phosphate buffer and pH 7.2 or 7.4 were prepared by oxidizing or reducing cytochrome *c* with K_3 Fe(CN)₆ and ascorbate, respectively, and passing the solution through a Sephadex-G-25 column. The solutions were kept on ice and used the same day.

The iron(III)cytochrome *c* solutions used for the pulse radiolysis experiments were prepared by adding appropriate amounts of deaerated stock solutions to 10 mM NaNO₂ solutions in 10 mM phosphate buffer, pH 7.2, saturated with N₂O. For iron(II)cytochrome *c* slightly different conditions were used: 5 mM NaNO₂, 0.10 M phosphate buffer, pH 7.4.

The concentration of iron(III)cytochrome *c* was determined spectrophotometrically at 410 nm, at which its molar absorption coefficient (ε) is $1.06 \times 10^5 \text{ M}^{-1} \text{ cm}^{-1}$ [36,37], whereas that of iron (II)cytochrome *c* was determined at 550 nm from the absorbance difference between reduced and oxidized cytochrome *c* with $\Delta \varepsilon = 21.1 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$ [38].

Pulse radiolysis

For iron(III)cytochrome c, pulse radiolysis experiments were performed with a 6-MeV linear accelerator at the Gray Cancer Institute (GCI; Oxford, UK; 0.2-µs pulses, dose per pulse 2.0-2.2 Gy, optical path cell 2 cm) and at the Institute of Applied Radiation Chemistry (IARC; Lodz University of Technology, Lodz, Poland; 3-ns pulses, dose per pulse 6–8 Gy, optical path cell 1 cm). The spectrophotometric detection system used a xenon arc lamp as a light source, monochromators Spex Minimate and Mono Spectra Pro 275, Hamamatsu photomultipliers R277 and R928, home-made amplifiers, and digital storage Tektronix oscilloscopes DSA602 and TDS540, at the GCI and IARC, respectively [39,40]. For iron(II)cytochrome c, N-ac-Tyr-NH₂, and N-ac-Trp-NH₂, a 2.3-MeV Febetron 705 electron accelerator (Titan Systems Corp.) at the Institute of Inorganic Chemistry (Swiss Federal Institute of Technology, Zurich, Switzerland; 50-µs pulse width, dose per pulse applied 3–10 Gy) was used. The light source was a 75-W xenon arc lamp and the optical path length of the quartz cell (Hellma GmbH & Co., Jena, Germany) was 1 or 2 cm. The detection system consisted of an Acton SP300 monochromator (Roper Scientific) and a R928 photomultiplier (Hamamatsu), a DHPCA200 amplifier (Femto Messtechnik GmbH), and a DL7100 digital storage oscilloscope (Yokogawa Electric Corp.). The dose per pulse was determined with the thiocyanate dosimeter [41]. All experiments were carried out at 23 °C. Results were analyzed with Origin 6.0 (OriginLab) or Kaleidagraph from Synergy Software (Reading, PA, USA) or simulated with the Gen-int5 simulator (EXCEL-Macro). Error bars in the figures represent standard deviations (s) from the mean value. Second-order rate constants are given as (mean value $\pm t_s s/n^{0.5}$) for 95% probability.

Generation of NO₂

For the reaction with cytochrome *c*, NO₂[•] was generated upon irradiation of aqueous solutions of NaNO₂ (10 or 5 mM) in phosphate buffer (10 mM or 0.10 M), pH 7.2 or 7.4, which contained 0–93 μ M cytochrome *c* and were saturated with N₂O (24.4 mM). During water radiolysis, e_{aq}^- , HO[•], and H[•] are generated with yields of 0.28, 0.28, and 0.06 μ mol J⁻¹ [42]. Under the experimental conditions used for the oxidized and reduced forms of cytochrome *c*, about 85 and 92% of e_{aq}^- , respectively, is converted to HO[•] [43] (Reaction (1)), and this, in turn, to NO₂[•] [32] (Reaction (2)):

$$e_{aq}^{-} + N_2 O + H_2 O \rightarrow HO^{\bullet} + N_2 + OH^{-},$$
 (1)

$$\mathrm{HO}^{\bullet} + \mathrm{NO}_{2}^{-} \to \mathrm{OH}^{-} + \mathrm{NO}_{2}^{\bullet}.$$
 (2)

The rest of the e_{aq}^- is expected to react mainly with NO₂⁻ to give NO₂²⁻ [44,45] and finally NO[•] [46]; less than 1.5% of the e_{aq}^- would react with the protein [47,48]. HO[•] and H[•] react with iron(III) cytochrome *c* with rate constants of 1.4×10^{10} [49] and 1.1×10^{10} M⁻¹ s⁻¹ [50,51] to give, among other products, 25–55 [52] and 50% iron(II)cytochrome *c* [50,51], respectively. The corresponding

Download English Version:

https://daneshyari.com/en/article/10737895

Download Persian Version:

https://daneshyari.com/article/10737895

Daneshyari.com