Contents lists available at SciVerse ScienceDirect



### Free Radical Biology & Medicine



journal homepage: www.elsevier.com/locate/freeradbiomed

#### **Original Contribution**

## Methionine excess in diet induces acute lethal hepatitis in mice lacking cystathionine $\gamma$ -lyase, an animal model of cystathioninuria

Hidenori Yamada <sup>a,b</sup>, Noriyuki Akahoshi <sup>a,b,c</sup>, Shotaro Kamata <sup>d</sup>, Yoshifumi Hagiya <sup>d</sup>, Takako Hishiki <sup>a</sup>, Yoshiko Nagahata <sup>c</sup>, Tomomi Matsuura <sup>c</sup>, Naoharu Takano <sup>c</sup>, Masatomo Mori <sup>b</sup>, Yasuki Ishizaki <sup>b</sup>, Takashi Izumi <sup>b</sup>, Yoshito Kumagai <sup>e</sup>, Tadashi Kasahara <sup>d</sup>, Makoto Suematsu <sup>a,c</sup>, Isao Ishii <sup>a,b,d,\*</sup>

<sup>a</sup> Department of Biochemistry, School of Medicine, Keio University, Tokyo 160-8582, Japan

<sup>b</sup> Department of Molecular & Cellular Neurobiology, Department of Medicine & Molecular Science, and Department of Biochemistry, Graduate School of Medicine, Gunma University, Gunma 371-8511, Japan

Suematsu Gas Biology Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 160-8582, Japan

<sup>d</sup> Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan

e Environmental Medicine Section, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan

#### ARTICLE INFO

Article history: Received 2 August 2011 Revised 15 February 2012 Accepted 22 February 2012 Available online 3 March 2012

Keywords: Antioxidants Homocysteine Metabolome Methionine sulfoxide Transamination Transsulfuration

#### ABSTRACT

Physiological roles of the transsulfuration pathway have been recognized by its contribution to the synthesis of cytoprotective cysteine metabolites, such as glutathione, taurine/hypotaurine, and hydrogen sulfide (H<sub>2</sub>S), whereas its roles in protecting against methionine toxicity remained to be clarified. This study aimed at revealing these roles by analyzing high-methionine diet-fed transsulfuration-defective cystathionine  $\gamma$ lyase-deficient ( $Cth^{-/-}$ ) mice. Wild-type and  $Cth^{-/-}$  mice were fed a standard diet (1×Met: 0.44%) or a high-methionine diet  $(3 \times Met \text{ or } 6 \times Met)$ , and hepatic conditions were monitored by serum biochemistry and histology. Metabolome analysis was performed for methionine derivatives using capillary electrophoresisor liquid chromatography–mass spectrometry and sulfur-detecting gas chromatography. The  $6 \times$  Met-fed Cth<sup>-/</sup> (not  $1 \times \text{Met-fed } Cth^{-/-}$  or  $6 \times \text{Met-fed wild type}$ ) mice displayed acute hepatitis, which was characterized by markedly elevated levels of serum alanine/aspartate aminotransferases and serum/hepatic lipid peroxidation. inflammatory cell infiltration, and hepatocyte ballooning; thereafter, they died of gastrointestinal bleeding due to coagulation factor deficiency. After 1 week on 6×Met, blood levels of ammonia/homocysteine and hepatic levels of methanethiol/3-methylthiopropionate (a methionine transamination product/methanethiol precursor) became significantly higher in  $Cth^{-/-}$  mice than in wild-type mice. Although hepatic levels of methionine sulfoxide became higher in  $6 \times$  Met-fed wild-type mice and  $Cth^{-/-}$  mice, those of glutathione, taurine/hypotaurine, and H<sub>2</sub>S became lower and serum levels of homocysteine became much higher in  $6 \times$  Met-fed Cth<sup>-/-</sup> mice than in wild-type mice. Thus, transsulfuration plays a critical role in the detoxification of excessive methionine by circumventing aberrant accumulation of its toxic transamination metabolites, including ammonia, methanethiol, and 3-methylthiopropionate, in addition to synthesizing cysteine-derived antioxidants to counteract accumulated pro-oxidants such as methionine sulfoxide and homocysteine.

© 2012 Elsevier Inc. All rights reserved.

# Abbreviations: Ac-Met sulfoxide, N- $\alpha$ -acetyl-L-methionine sulfoxide; ALP, alkaline phosphatase; ALT, alanine aminotransferase; APTT, activated partial thromboplastin time; AST, aspartate aminotransferase; BUN, blood urea nitrogen; CE-MS, capillary electrophoresis-mass spectrometry; CBS, cystathionine $\beta$ -synthase; CK, creatine kinase; CTH, cystathionine $\gamma$ -lyase; DIC, disseminated intravascular coagulation; GSH, reduced glutathione; GSSG, oxidized glutathione; KMTB, 2-keto-4-methylthiobutyrate; LC, liquid chromatography; LDH, lactate dehydrogenase; MAT, methionine adenosyltransferase; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; TBARS, thiobarbituric acid-reactive substrates; TUNEL, terminal deoxynucleotidyl transferase dUTP nick-end labeling.

\* Corresponding author at: Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan. Fax: +81 3 5400 2671. *E-mail address:* isao-ishii@umin.ac.jp (I. Ishii).

0891-5849/\$ - see front matter © 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.freeradbiomed.2012.02.033

#### Introduction

Methionine is an essential amino acid in mammals; however, it is the most toxic among the constituent amino acids of proteins, whether expressed in terms of percentage of the diet or an increase over the requirement (0.5–0.6% of the diet). When the methionine level in voluntary food intake is maintained at four to six times the estimated requirement, food intake and growth are suppressed [1]. Excessive methionine intake causes oxidative/nitrosative injuries in the liver, hepatic encephalopathy, altered erythrocyte morphology, and the resultant splenic hemosiderosis in rats [1–4]. Some metabolic change or adaptation may occur because supplementation of serine or glycine could restore growth after a few days of feeding on a highmethionine diet in rats [1] and patients with innate hypermethioninemia by methionine adenosyltransferase (MAT)<sup>1</sup> I/III deficiency are asymptomatic [5].

Methionine is normally metabolized in the liver to cysteine via the methionine cycle and transsulfuration [6]. Serine is a substrate of the transsulfuration enzyme cystathionine  $\beta$ -synthase (CBS), and glycine is a precursor of serine; therefore, supplementation of serine or glycine may lead to effective clearance of methionine by activating CBS. On the other hand, excessive methionine can be converted via transamination to 2-keto-4-methylthiobutyrate (KMTB), 3methylthiopropionate (MTP), and methanethiol (CH<sub>3</sub>SH; methyl mercaptane), all of which are extremely toxic [1,7,8]. Increased amounts of methionine transamination products are present in plasma and urine of patients with severe hypermethioninemia due to either MAT I/III deficiency or CBS deficiency [5]. Poisonous ammonia (NH<sub>3</sub>) is also generated from glutamate, a transamination product from a reaction between methionine and  $\alpha$ -ketoglutarate. There is a significant association between the severity grades of hepatic encephalopathy and serum concentrations of methionine, KMTB, NH<sub>3</sub>, or CH<sub>3</sub>SH-mixed disulfides [7]. Excess CH<sub>3</sub>SH/NH<sub>3</sub> causes hepatic encephalopathy/coma in experimental animals [9]. Meanwhile, Sadenosylmethionine (SAM; a MAT product) is sold as a nutritional supplement to improve liver function and depression under the marketing name SAM-e [10]. The pathophysiology of methionineinduced liver toxicity remains to be elucidated.

To date, five genetic mouse models with targeted deletion of methionine cycle/transsulfuration enzymes (except multiple SAMdependent methyltransferases) have been reported: mice lacking Sadenosylhomocysteine (SAH) hydrolase [11], methionine synthase [12], MAT I/III [13], CBS [14], and cystathionine  $\gamma$ -lyase (CTH) [15,16]; the first two of these are embryonically lethal. MAT I/III-deficient mice are apparently normal but predisposed to liver injury [13] and spontaneously develop liver tumors [17], whereas CBS-deficient  $(Cbs^{-/-})$  mice (a model of homocystinuria; OMIM ID: 236200) suffer from severe hepatic dysfunction/steatosis and most die before 4 weeks of age [14,18]; importantly, both mice display hypermethioninemia [13,18]. Here we investigated the pathogenesis upon excessive methionine intake utilizing transsulfuration-defective CTHdeficient ( $Cth^{-/-}$ ) mice, a model of cystathioninuria (OMIM ID: 219500), which develop apparently normally and are free of hypermethioninemia and hepatic dysfunction [16].

#### Materials and methods

#### Animals

CTH heterozygous (*Cth*<sup>+/-</sup>) mice were generated and backcrossed for 10 generations to a C57BL/6J inbred strain (CLEA Japan, Tokyo, Japan) [16]. CBS heterozygous (*Cbs*<sup>+/-</sup>) mice (B6.129P2-*Cbs*<sup>tm1Unc</sup>/J) were obtained from The Jackson Laboratory (Bar Harbor, ME, USA) and backcrossed for 10 generations to C57BL/6J [16,18]. The *Cth*<sup>+/-</sup> (or *Cbs*<sup>+/-</sup>) males and females (backcrossed 10 generations; N10) were bred to obtain *Cth*<sup>-/-</sup> (or *Cbs*<sup>-/-</sup>) mice. Mice were allowed free access to CE-2 standard dry rodent diet (1×Met; CLEA Japan), which contains 0.44% methionine, or to high-methionine diets (3×Met (CE-2+0.88% Met) and 6×Met (CE-2+2.20% Met)). All procedures involving animals were approved by the Animal Care Committee of Keio or Gunma University.

## Measurement of amino acid contents and biochemical parameters in serum

Levels of total homocysteine and other free amino acids were measured as described previously [16,18]. Levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin, lactate dehydrogenase (LDH), creatine kinase (CK), albumin, blood urea nitrogen (BUN), creatinine, and NH<sub>3</sub> were measured using Dri-Chem 4000 (Fuji Film). Levels of glucose and triglyceride were measured with enzymatic assay kits (Wako, Osaka, Japan). Total antioxidant capacity (to reduce  $Cu^{2+}$  to  $Cu^+$  [16]) was measured using an antioxidant assay kit (Cayman Chemical, Ann Arbor, MI, USA). Levels of lipid peroxidation and protein carbonyls were examined using a TBARS (thiobarbituric acid-reactive substrates) assay kit and a protein carbonyl fluorometric assay kit, respectively (Cayman Chemical). Corticosterone levels were determined using an AssayMax corticosterone ELISA kit (Assay Pro, St. Charles, MO, USA).

#### Histochemistry

Tissues were quickly dissected out from ether-anesthetized mice, fixed in 10% formalin, and embedded in paraffin. Five-micrometer sections were cut with a cryostat, deparaffinized, and stained with Mayer's hematoxylin/eosin Y or Prussian blue/nuclear fast red for detection of splenic hemosiderosis (focal iron accumulation) [19]. A terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was performed using an in situ apoptosis detection kit (Takara Bio, Tokyo, Japan) [16]. For oil red O staining, livers were fixed overnight in 4% paraformaldehyde and cryoprotected in 30% sucrose. After sinking, they were embedded, frozen, sectioned (5  $\mu$ m), and stained with Mayer's hematoxylin/oil red O solutions [18]. The slides were examined with a BZ-9000 fluorescence microscope (Keyence, Osaka, Japan) fitted with Plan Apo 20× or 40× lens (Nikon).

#### Measurement of bleeding times, blood counts, and coagulation tests

Tail bleeding time was determined by removing 2 mm of the distal tail and immersing the tail in 37 °C isotonic saline. Complete cessation of bleeding was defined as the bleeding time with a cut-off of 6 min. Blood samples were quickly collected from the heart and two types of plasma pools were prepared: one treated with sodium heparin (final 1 U/ml) and the other with sodium citrate (final 3.8%). Blood counts were performed using the former pool with a MEK-6038 automatic hematology analyzer (Nihon Koden, Tokyo, Japan). Prothrombin time (PT), activated partial thromboplastin time (APTT), and fibrinogen levels were measured using the second type of pool with a COAG2V blood coagulation analyzer (A&T Corp., Kanagawa, Japan). A cut-off of 50 mg/dl was set for low fibrinogen levels.

#### Hepatocyte culture and cell viability assay

Hepatocytes were prepared using collagenase perfusion [16] and dispersed onto collagen I-coated dishes/slides. After overnight incubation with serum (10%)-containing Dulbecco's modified Eagle's medium (DMEM), the cells were washed twice and incubated with methionine/cystine-free DMEM with or without various concentrations of L-methionine, DL-homocysteine, L-cysteine, or DL-methionine sulfoxide. The cells in 96-well dishes were subjected to a CellTiter-Glo luminescence cell viability assay (Promega) to measure cellular ATP levels. The cells on eight-well slides were stained with a GFP-Certified apoptosis/necrosis detection kit (Enzo Life Sciences, Plymouth Meeting, PA, USA), followed by mounting with ProLong Gold antifade reagent with 4',6-diamidino-2-phenylindole (DAPI; Invitrogen). Numbers of annexin V-EnzoGold-stained apoptotic cells, 7amino actinomycin D-stained necrotic cells, and DAPI-positive live adherent cells were counted (>1000 total cells in each condition) using BZ-H1C cell counting software (Keyence).

#### Metabolome analysis

Livers were quickly dissected out, snap-frozen in liquid nitrogen, and stored at -80 °C until use. Hepatic levels of most methionine

Download English Version:

## https://daneshyari.com/en/article/10738151

Download Persian Version:

https://daneshyari.com/article/10738151

Daneshyari.com