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a b s t r a c t

Strategies for correlation analysis in protein contact prediction often encounter two challenges, namely,
the indirect coupling among residues, and the background correlations mainly caused by phylogenetic
biases. While various studies have been conducted on how to disentangle indirect coupling, the removal
of background correlations still remains unresolved. Here, we present an approach for removing back-
ground correlations via low-rank and sparse decomposition (LRS) of a residue correlation matrix. The
correlation matrix can be constructed using either local inference strategies (e.g., mutual information, or
MI) or global inference strategies (e.g., direct coupling analysis, or DCA). In our approach, a correlation
matrix was decomposed into two components, i.e., a low-rank component representing background
correlations, and a sparse component representing true correlations. Finally the residue contacts were
inferred from the sparse component of correlation matrix.

We trained our LRS-based method on the PSICOV dataset, and tested it on both GREMLIN and CASP11
datasets. Our experimental results suggested that LRS significantly improves the contact prediction
precision. For example, when equipped with the LRS technique, the prediction precision of MI and mfDCA
increased from 0.25 to 0.67 and from 0.58 to 0.70, respectively (Top L/10 predicted contacts, sequence
separation: 5 AA, dataset: GREMLIN). In addition, our LRS technique also consistently outperforms the
popular denoising technique APC (average product correction), on both local (MI_LRS: 0.67 vs MI_APC:
0.34) and global measures (mfDCA_LRS: 0.70 vs mfDCA_APC: 0.67). Interestingly, we found out that
when equipped with our LRS technique, local inference strategies performed in a comparable manner to
that of global inference strategies, implying that the application of LRS technique narrowed down the
performance gap between local and global inference strategies. Overall, our LRS technique greatly fa-
cilitates protein contact prediction by removing background correlations.

An implementation of the approach called COLORS (improving COntact prediction using LOw-Rank
and Sparse matrix decomposition) is available from http://protein.ict.ac.cn/COLORS/.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In natural environment, a protein usually adopts a specific ter-
tiary structure determined primarily by its amino acid sequence [3].
Under chemical and physical effects, some residues are spatially
close to others, forming a set of residueeresidue contacts. These
contacts are known to be responsible for stabilizing the native
protein folds [13]. The accurate prediction of residueeresidue
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contacts can provide distance information among residues, which
should greatly helps both free modeling [24,26] and template-
based modeling strategies [22] for protein structure prediction.

A large variety of approaches have been proposed for residue-
eresidue contact prediction, including supervised-learning ap-
proaches [7,9,32,30] and purely sequence-based approaches
[5,8,27,6]. Typically, a purely sequence-based approach begins
with building multiple sequence alignment (MSA) for a target
protein, and then identifies possible residueeresidue contacts
through correlated mutation analysis [29,12]. The underlying
principle is that residueeresidue contacts, generally being
responsible for stabilizing protein structure, tend to be held during
evolutionary history of the protein; thus, if a residue in contact
mutates, its contacting partner is expected to accordinglymutate to
maintain the contact. This coevolution between contacting residues
commonly appear as correlations between the corresponding col-
umns in MSA of the target protein (hereafter called true correla-
tion); the correlation among MSA columns, in turn, can be explored
to infer residue contacts.

Two difficulties are involved in the purely sequence-based
strategy for correlation analysis [16,24]. First, the true correla-
tions are generally blurred by transitive correlations, also known as
indirect coupling. More precisely, suppose the ith residue correlates
with the jth residue, and the jth residue correlates with the kth
residue; in this situation, even if the ith residue does not contact
with the kth residue, correlation might still be observed between
them due to transitive effects. Second, the intrinsic background
correlations usually interfere with the identification of coevolution
signals. The background correlations come from at least two sour-
ces: (1) During the phylogenetic history of a certain protein family,
mutations occurring in an ancestral protein will be inherited by all
of its descendants. Thus, almost all residue pairs appear to have
some degree of correlations purely caused by phylogenetic biases.
(2) The highly variable columns in MSAs usually lead to relatively
high level of both random and non-random correlations among
these columns [8], which forms another source of the background
correlations. The background correlations, as well as the indirect
coupling, often confound the correlation analysis and subsequent
contact prediction.

Recently, there have been significant progresses in overcoming
the indirect coupling difficulty. For example, mfDCA employed the
mean field technique for direct coupling analysis [27], while
plmDCA exploited the pseudo-likelihood maximization technique
to achieve the same objective [10,18]. Another approach, called
sparse inverse covariance estimation (PSICOV), models MSA using a
Gaussian distribution, and estimates partial correlations by
inverting the empirical covariance matrix through graphical lasso
technique [16]. Following this strategy, Andreatta et al. proposed to
utilize the least-square technique to speed up the inversion of
empirical covariance matrices [2]. Note that an MSA usually con-
sists of proteins with divergent sequences but similar folds, Ma
et al. successfully applied the group graphical lasso technique into
direct coupling analysis of MSA [23]. These approaches were
known as “global” since correlated residues are treated dependent
on each other; in contrast, the “local” statistical inference mod-
elsdfor instance, MI [25] and OMES [11]dtreat a certain residue
pair independent of others [24].

Besides these efforts to overcome indirect coupling, a few
methods have been developed for removing the background cor-
relations caused by phylogenetic biases. In particular, it has been
reported that the exclusion of highly similar sequences helps
reduce phylogenetic biases [25]. Bootstrapping and other
randomization methods [33,28] were also found effective in
reducing phylogenetic biases. Also promising is the average prod-
uct correction (APC) technique. APC was originally designed to

efficiently estimate the expected levels of background noise arising
from phylogenetic sources [8], and currently the APC technique is
widely used as a post-processing procedure in both local and global
inference strategies. The existing approaches have proven to be
relatively successful on various proteins; however, the removal of
background correlation still remains a challenge to the correlation
analysis of MSA.

In this study, we present a novel approach that employs the low-
rank and sparse matrix decomposition (LRS) technique for
removing background correlations. The approach distinguishes
true correlations from background correlations according to their
different characteristics, i.e., the sparsity of true correlations, and
the low-rank characteristic of background correlations. On one
side, the number of contacts in a L-length protein was estimated as
~0.05 � L2 [17]. This number is substantially small when consid-
ering the total L2 possible contacting residue pairs, and thus
implying the considerable sparsity of true correlations. On the
other side, the first mode (principal component) of a correlation
matrix describes the “coherent” correlations among all positions
caused by phylogenetic biases [14]. In fact, the APC technique is
essentially equivalent to removing the first mode of a correlation
matrix, which implicitly assumes the rank of background correla-
tion as 1 (see supplementary). However, besides the first mode, the
phylogenetic biases might also contribute to other modes espe-
cially when MSA are constructed from proteins segregated into
subfamilies [14]. Here, we adopted the similar but more general
assumption of background correlations being low-rank and per-
formed LRS to self-adaptively separates true correlations from
background correlations.

It should be pointed out that the LRS technique, also known as
robust principle component analysis (PCA), has been widely
applied in the field of computational vision analysis [4] and gene
expression analysis [21,31]. As far as we know, this is the first time
that the LRS technique has been applied for protein contact
prediction.

We evaluated LRS technique on GREMLIN dataset and CASP11
targets as well. The evaluation results suggested that by using the
LRS technique, the contact prediction precision was significantly
improved regardless of whether local or global inference models
were used.

2. Methods

To apply the LRS technique for protein contacts prediction, we
first built a matrix to measure correlations among residues in the
target protein. The residue correlation measure can be calculated
by using local statistical models (e.g., MI and OMES) or global sta-
tistical models (e.g., DCA and PSICOV). Next, by using the LRS
technique, we decomposed the residue correlation matrix into a
low-rank component plus a sparse component. The sparse
component was then used to infer residueeresidue contacts in the
target protein.

We will describe the residue correlation matrix construction in
Section 2.1, thereafter describe the LRS technique in Section 2.2.

2.1. Residue correlation matrix construction

A variety of measures have been proposed to evaluate the cor-
relation between any two residues in a protein. The correlation
measures are usually derived from MSA information by using local
statistical models or global statistical models. The correlation
matrices reported by mfDCA [27], PSICOV [16], and plmDCA [10]
were used as representatives of global statistical models. As for
local statistical models, we focused on the widely-used MI [25] and
OMES [19] correlation measures. In addition, we designed another
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