ELSEVIER

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Crystal structure and biochemical properties of the (S)-3-hydroxybutyryl-CoA dehydrogenase PaaH1 from *Ralstonia eutropha*

Jieun Kim ^{a,1}, Jeong Ho Chang ^{b,1}, Kyung-Jin Kim ^{a,*}

^a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Program), Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea ^b Department of Biology, Teachers College, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea

ARTICLE INFO

Article history: Received 3 April 2014 Available online 29 April 2014

Keywords: (S)-3-Hydroxybutyryl-CoA dehydrogenase Ralstonia eutropha n-Butanol Crystal structure

ABSTRACT

3-Hydroxybutyryl-CoA dehydrogenase is an enzyme involved in the synthesis of the biofuel *n*-butanol by converting acetoacetyl-CoA to 3-hydroxybutyryl-CoA. To investigate the molecular mechanism of *n*-butanol biosynthesis, we determined crystal structures of the *Ralstonia eutropha*-derived 3-hydroxybutyryl-CoA dehydrogenase (*Re*PaaH1) in complex with either its cofactor NAD⁺ or its substrate acetoacetyl-CoA. While the biologically active structure is dimeric, the monomer of *Re*PaaH1 comprises two separated domains with an N-terminal Rossmann fold and a C-terminal helical bundle for dimerization. In this study, we show that the cofactor-binding site is located on the Rossmann fold and is surrounded by five loops and one helix. The binding mode of the acetoacetyl-CoA substrate was found to be that the adenosine diphosphate moiety is not highly stabilized compared with the remainder of the molecule. Residues involved in catalysis and substrate binding were further confirmed by site-directed mutagenesis experiments, and kinetic properties of *Re*PaaH1were examined as well. Our findings contribute to the understanding of 3-hydroxybutyryl-CoA dehydrogenase catalysis, and will be useful in enhancing the efficiency of *n*-butanol biosynthesis by structure based protein engineering.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Due to issues such as limited fossil fuel availability, greenhouse gas emissions, and the requirement for increased energy security or diversity, there is increased public and scientific interest in energy alternatives such as biofuels. A wide range of biofuels can be derived from plant or microbial biomass [1]. The two major biofuels in use today are ethanol and butanol, which can be combined with gasoline for use in conventional engines [2,3]. However, ethanol has a low energy efficiency compared to gasoline and high vaporizability [4]. Alternatively, n-butanol produced by microbial fermentation has characteristics that are closer to those of motor-vehicle fuels and could serve as a better replacement [5]. The anaerobic bacterium *Clostridium acetobutylicum* can efficiently produce n-butanol through a carbohydrate catabolic pathway [6,7]. In comparison with bio-ethanol, the advantage of the biosynthe-

sized n-butanol is that it has a high energy content, low corrosion, increased solubility, and easier to blend with gasoline [8-10].

Even if *n*-butanol is considered a potential next generation biofuel source, its biosynthetic efficiency must be improved, and there have been multiple attempts to do so [11]. For example, many engineering efforts ranging from genetic modifications to microbial culture optimization, have aimed to increase *n*-butanol production during ABE fermentation. However, the *n*-butanol synthetic titers do not exceed 1 g/L in heterologous host cells that express clostridial *n*-butanol biosynthetic machinery [7–10]. Very recently, alternative methods to enhance the *n*-butanol yield have been reported; these involve the use of metabolically engineered hosts such as *Escherichia coli*, *Pseudomonas putida*, and *Bacillus subtilis* in the *n*-butanol biosynthetic pathway to improve biofuel production from small organic molecules [12–14].

A next step to produce large amount of n-butanol is the engineering of non-solventogenic microbes [15]. It has been shown that the n-butanol inhibits E. coli growth for example, the growth is almost ceased at approximately n-butanol concentrations of 1% [16], therefore, the toxicity effects of n-butanol in bacterial cells should be moderated [17]. Another issue is that the additive pathways for n-butanol synthesis disrupt the balance of energy carriers such as NADH/NAD $^+$, which results in a decrease in n-butanol

^{*} Corresponding author. Address: Structural and Molecular Biology Laboratory, School of Life Sciences, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 702-701, Republic of Korea. Fax: +82 53 955 5522.

E-mail address: kkim@knu.ac.kr (K.-J. Kim).

¹ These authors contributed equally to this work.

production [18]. These multiple issues have necessitated an optimization of the heterologous metabolic pathways to maximize the *n*-butanol biosynthetic yield by the use of engineered non-solventogenic microbes [18,19].

In contrast to *C. acetobutylicum*, which is a representative *n*-butanol producing host, *Ralstonia eutropha* has a broader spectrum and is used in the production of polymers such as polyhydroxybutyrate (PHB). It has been reported that the 3-hydroxybutyryl-CoA dehydrogenase PaaH1 is involved in *n*-butanol biosynthesis [20], and *R. eutropha*-derived PaaH1 is proposed as a homolog of *Clostridium butyricum* 3-hydroxybutyryl-CoA dehydrogenase (*CbHBD*) that is involved in the second step of *n*-butanol biosynthesis [21]. Here, we report the first crystal structure of *R. eutropha* 3-hydroxybutyryl-CoA dehydrogenase (*Re*PaaH1), an enzyme that catalyzes the second step of *n*-butanol biosynthesis and converts acetoacetyl-CoA to 3-hydroxybutyryl-CoA. Kinetic properties and mutagenesis experiments were also reported.

2. Materials and methods

2.1. Preparation of RePaaH1

Cloning, expression, purification, and crystallization of RePaaH1 will be described elsewhere. Briefly, the RePaaH1 coding gene (Met1-Lys284, M.W. 32 kDa) was amplified by polymerase chain reaction (PCR) using R. eutropha chromosomal DNA as a template. The PCR product was then subcloned into pET30a (Invitrogen) with 6-histag at the C-terminus. The expression construct was transformed into an E. coli B834 strain, which was grown in 1 L of LB medium containing kanamycin (50 mg/ml) at 37 °C. After induction via the addition of 1.0 mM IPTG, the culture medium was further maintained for 20 h at 18 °C. The culture was harvested by centrifugation at $5000 \times g$ at 4 °C. The cell pellet was resuspended in buffer A (40 mM Tris-HCl at pH 8.0 and 5 mM β-mercaptoethanol) and then disrupted by ultrasonication. The cell debris was removed by centrifugation at $11,000 \times g$ for 1 h, and lysate was bound to Ni-NTA agarose (QIAGEN). After washing with buffer A containing 20 mM imidazole, the bound proteins were eluted with 300 mM imidazole in buffer A. A trace amount of contamination was removed by applying HiLoad 26/60 Superdex 200 prep grade (GE Healthcare) size exclusion chromatography. The purified protein showed ~95% purity on SDS-PAGE, was concentrated to 50 mg/ml in 40 mM Tris-HCl, pH 8.0, 1 mM dithiothreitol.

2.2. Crystallization, data collection, and structure determination of RePaaH1

Suitable crystals for diffraction experiments were obtained at 22 °C within 7 days from the precipitant of 2 M (NH₄)₂SO₄, 0.1 M Cacodylate pH 6.5 and 0.2 M Sodium Chloride. The crystals were transferred to cryoprotectant solution containing 2 M (NH₄)₂SO₄, 0.1 M Cacodylate pH 6.5, 0.2 M Sodium Chloride and 30% glycerol, fished out with a loop larger than the crystals and flash-frozen by immersion in liquid nitrogen at $-173\,^{\circ}$ C. The data were collected to a resolution of 2.6 Å at 7A beamline of the Pohang Accelerator Laboratory (PAL, Pohang, Korea) using a Quantum 270 CCD detector (ADSC, USA). The data were then indexed, integrated, and scaled using the HKL2000 suite [22]. The data statistics are summarized in Table 1. Crystals of an apo-form belonged to space group $p3_221$, with unit cell parameters of a = b = 135.43 Å, c = 97.17 Å, $\alpha = \beta = 90 \text{ and } \gamma = 120$. Assuming 3 molecules of RePaaH1 per asymmetric unit, the crystal volume per unit of protein mass was 2.68 Å³ Da⁻¹ [23], which corresponds to a solvent content of approximately 54.12%. RePaaH1 crystals in complex with NAD⁺ and with acetoacetyl-CoA were crystallized with the same crystallization condition supplemented with 20 mM each of NAD⁺ and acetoacetyl-CoA. Crystals in complex with NAD⁺ belonged to space group C2, with unit cell parameters of $a = 235.08 \text{ Å}, b = 135.59 \text{ Å}, c = 97.45 \text{ Å}, \alpha = \gamma = 90 \text{ and } \beta = 90.1.$ Assuming 9 molecules of RePaaH1 per asymmetric unit, the crystal volume per unit of protein mass was 2.70 Å³ Da⁻¹ [23], which corresponds to a solvent content of approximately 54.41%. Crystals in complex with acetoacetyl-CoA belonged to the same space with RePaaH1-NAD⁺ complex crystals with similar unit cell parameters. SeMet-substituted apo-form crystals were obtained using the same crystallization condition as used for the native protein crystal. Single-wavelength anomalous dispersion (SAD) data were collected from an SeMet protein crystal on beamline 7A at PAL to a wavelength of 0.97855 Å. 36 Se atoms out of the expected 39 in the asymmetric unit were identified at 2.42 Å resolution using SOLVE [24]. The electron density was improved by density modification using RESOLVE [25], resulting in 54% of the cloned residues being automatically built.

Further model building was performed manually using the program WinCoot [26] and the refinement was performed with REF-MAC5 [27]. The structures of *Re*PaaH1 in complex with NAD⁺ and with acetoacetyl-CoA were solved by molecular replacement using the crystal structure of the apo-form of *Re*PaaH1. The refined model of apo-form of *C Re*PaaH1 and those in complex with NAD⁺ and with acetoacetyl-CoA were deposited in the Protein Data Bank (pdb code 4PZC for apo-form of *Re*PaaH1, and 4PZD and 4PZE for NAD⁺ and acetoacetyl-CoA bound forms of *Re*PaaH1, respectively).

2.3. 3-Hydroxybutyryl-CoA dehydrogenase activity measurement

All assays were performed with reaction mixture of 1 ml total volume. The reaction mixture contained 100 mM MOPS (pH 8.0), 100 μ M of NADH, 100 μ M acetoacetyl-CoA, 1 mM DTT (dithiothreitol), and 32 μ M of RePaaH1 enzyme. After pre-incubation at 30 °C for 5 min, the reaction was initiated by the addition of enzyme. The decrease in NADH was then measured at 340 nm and 30 °C using an extinction coefficient of 6.3 \times 10^3 [28,29]. The enzyme kinetics experiments were performed by addition of various concentrations of acetoacetyl-CoA substrate, such as 10, 20, 40, 60, 80 and 100 μ M.

3. Results and discussion

3.1. Overall structure of RePaaH1

To determine enzymatic properties of the RePaaH1 protein, we determined the crystal structure of RePaah1 at 2.6 Å. The asymmetric unit contains three RePaaH1 molecules, which corresponded to one biologically active dimer and one molecule that can be generated to a dimer by crystallographic symmetry operation (Fig. 1). The size exclusion chromatography results also confirmed that RePaaH1 exists as a dimer (data not shown). A search using the Dali server revealed that the structure of RePaaH1 was homologous to that of human mitochondrial L-3-hydroxyacyl-CoA dehydrogenases (HuHAD) [28]. The monomeric RePaaH1 structure exhibits a two-domain topology with the N- and C-terminal domains (Fig. 1C). The N-terminal domain (NTD, residues 1–188) shows a β – α – β fold similar to that in NAD⁺(P)-binding proteins, and consists of a core eight-stranded β-sheet flanked by α-helices. As observed in a typical Rossmann fold, the parallel six $(\beta 1-\beta 6)$ strands of the sheet run in the opposite direction to the two parallel β 7 and β 8 strands. A large helix-turn-helix motif (α 2 and $\alpha 3$) connects $\beta 2$ and $\beta 3$, and extends from the $\beta - \alpha - \beta$ core. The C-terminal domain (CTD, residues 189-284) consists of five α -helices ($\alpha 8-\alpha 12$) and is mainly involved in dimerization

Download English Version:

https://daneshyari.com/en/article/10755129

Download Persian Version:

https://daneshyari.com/article/10755129

<u>Daneshyari.com</u>