Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Elastic rotation of *Escherichia coli* F_0F_1 having ε subunit fused with cytochrome b_{562} or flavodoxin reductase

Hideyuki Oka^a, Hiroyuki Hosokawa^b, Mayumi Nakanishi-Matsui^b, Stanley D. Dunn^c, Masamitsu Futai^b, Atsuko Iwamoto-Kihara^{a,*}

^a Department of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Shiga 526-0829, Japan ^b Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Yahaba, Iwate 028-3694, Japan ^c Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada

ARTICLE INFO

Article history: Received 25 February 2014 Available online 13 March 2014

Keywords: ATP synthase F_0F_1 Molecular motor Elastic rotation ϵ Subunit Energy coupling

ABSTRACT

Intra-molecular rotation of F_0F_1 ATP synthase enables cooperative synthesis and hydrolysis of ATP. In this study, using a small gold bead probe, we observed fast rotation close to the real rate that would be exhibited without probes. Using this experimental system, we tested the rotation of F_0F_1 with the ε subunit connected to a globular protein [cytochrome b_{562} (ε -Cyt) or flavodoxin reductase (ε -FlavR)], which is apparently larger than the space between the central and the peripheral stalks. The enzymes containing ε -Cyt and ε -FlavR showed continual rotations with average rates of 185 and 148 rps, respectively, similar to the wild type (172 rps). However, the enzymes with ε -Cyt or ε -FlavR showed a reduced proton transport. These results indicate that the intra-molecular rotation is elastic but proton transport requires more strict subunit/subunit interaction.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

ATP synthase (F_0F_1), ubiquitously found in membranes of bacteria, mitochondria, and chloroplast thylakoids, synthesizes ATP coupled with an electrochemical proton gradient generated by the electron transport chain [1–3]. Bacteria have the simplest version consisting of a peripheral sector F_1 ($\alpha_3\beta_3\gamma\delta\epsilon$) with three catalytic β subunits, and a membrane integral F_0 (ab_2c_{10-15}) with the proton pathway formed from the *a* subunit and the multiple *c* subunits (*c*-ring).

Catalysis and transport are coupled through the intra-molecular rotations, consistent with the "binding change mechanism" [1]. The *c*-ring rotation powered by H⁺ transport through two aqueous half-channels and multiple Asp/Glu residues of the *c*-ring supports the sequential conformational changes of catalytic site in each of the three β to synthesize ATP [1–3].

Single molecule observations of *Escherichia coli* F_0F_1 indicated clearly that the $\gamma \epsilon c_{10}$ complex rotates against the $\alpha_3\beta_3\delta ab2$ subunits during ATP hydrolysis [4–7]. Experimentally, the F_0F_1 was immobilized on the glass surface through the α or β subunit and an actin filament probe attached to the *c* subunit showed counterclockwise rotation [4,6] (Fig. 1A). The probe attached to the β , α , or *a* subunit also indicated the rotation of $\alpha_3\beta_3\delta ab2$ complex against $\gamma \epsilon c_{10}$, when the purified or membrane bound enzyme was immobilized through the *c*-ring [6,7] (Fig. 1B). However, the rotation rates observed were slow due to the large viscous drag on the actin filament. Experiments using single molecule FRET analysis also showed the rotation of membrane-bound F_0F_1 during ATP synthesis/hydrolysis [8].

Although the detailed tertiary structure of F_0F_1 is still unknown, the structure of mammalian F_1 with its *c*-ring has been reported [9]. The higher-ordered structure obtained by electron microscopy [10] clearly showed the central and peripheral stalks connecting F_1 and F_0 , corresponding to the rotor and the stator assembly, respectively. The central stalk was a part of the rotor $\gamma \varepsilon c_{10}$, formed from the γ and the ε subunits and loop regions of the *c* subunits, whereas peripheral stalk was formed from the subunits *b* and δ . The microscopic structure also indicated the presence of an open space between the two stalks [10].

Detailed structures of the ϵ subunit forming the central stalk were extensively studied. The isolated ϵ subunit showed two

Abbreviations: C₁₂E₈, octaethylene glycol monododecyl ether; MES, 2-(*N*-morpholino)ethanesulfonic acid; MOPS, 3-(*N*-morpholino)propanesulfonic acid; Tricine, *N*-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine; Tris, tris(hydroxymethyl)aminomethane; ε -Cyt, ε subunit connected with cytochrome b_{562} ; ε -FlavR, ε subunit connected with flavodoxin reductase.

^{*} Corresponding author. Fax: +81 749 64 8140.

E-mail address: a_iwamoto@nagahama-i-bio.ac.jp (A. Iwamoto-Kihara).

Fig. 1. Rotation observations of the F_0F_1 using 60 nm bead probes. (A) Rotation observation using the gold bead attached to the *c*-ring of F_0F_1 . The F_0F_1 was immobilized on the Ni-coated glass via the histidine-tag at the amino termini of the β subunits. The biotinylated gold bead was linked to the *c* subunit through the streptavidin (SA). Upon ATP hydrolysis, the bead revolution was observed. (B) Rotation observation using the gold bead attached to the β subunit of F_0F_1 . The F_0F_1 was immobilized through the *c*-ring, and the gold bead attached to the β subunit. The space between the central and the peripheral stalks was estimated [10], and indicated as a sphere space (diameter, ~30 Å). The green and purple cuboids were shown as the fused proteins cytochrome b_{562} and flavodoxin reductase, respectively. (C) Ribbon models of proteins that fused to the carboxyl termini of the ϵ subunits. Cytochrome b_{562} (23 × 24 × 48 Å) (Cyt, PDB ID: 256B) [27] and Flavodoxin reductase (30 × 35 × 55 Å) (FlavR, PDB ID: 1FDR) [28] are shown.

carboxyl-terminal helices folded near the amino terminal β -sandwich domain [11,12]. However, according to the recent crystal structure of F₁ [13], two ε subunit helices were extended along the coiled-coil of the γ subunit, and the second helix was penetrated between the rotor and the stator to prevent the γ subunit rotation. This structure seemed consistent with the inhibition of F₁ ATPase with the ε subunit [14]. Crosslink studies suggested that the ε subunit adopted both folded and extended conformations in the F₀F₁ [15,16].

Considering the function and structure of the central stalk, it was of interest to study the F_0F_1 carrying the ε subunits fused to globular proteins at the carboxyl terminus [17]. The fused proteins such as cytochrome b_{562} , flavodoxin, and flavodoxin reductase were large enough to affect the enzyme catalysis (Fig. 1C). As expected, the extra moieties caused significantly reduced ATP-driven proton transport while ATPase activities were retained [17]. The wild-type ε subunit inhibited rotation and ATPase activity of F_1 sector, whereas the ε -Cyt (ε subunit connected with cytochrome b_{562}) showed no effect [18], indicating that ε -Cyt lost normal interaction of its carboxyl-terminal region with other subunits. Thus, we concluded that the globular proteins fused to the ε subunits affected rotation, leading to lower proton transport. However, no studies were carried out to address the effect of ε -Cyt on rotational catalysis of F_0F_1 .

In this study, we observed faster rotation of the F_0F_1 with a gold bead probe (60 nm) attached to the β subunit or the *c*-ring (Fig. 1A, B). Since viscous drag on the revolving small bead was substantially low, rotation rates observed were 30–50-fold higher than

that with actin probe, and close to the rate which would be exhibited without a probe. This experimental system prompted us to test the rotation of F_0F_1 with the ε subunit connected to the extra globular proteins because they reduced energy coupling to H⁺-pumping. Surprisingly, the beads attached to the β subunit of the enzymes containing the ε -Cyt and the ε -FlavR showed rates similar to that of the wild-type enzyme. Considering the dimensions of the extra domains included into the $\gamma \varepsilon c_{10}$ complex, these studies suggested that the F_0F_1 has elasticity which permits rotation of the large central stalk.

2. Materials and methods

2.1. Recombinant plasmids

F₀F₁ operon containing the genes for histidine-tagged β subunit and the *c* subunit with *c*Glu2Cys substitution was previously described [6]. Genes for the ε-fusions were introduced into pBUR13DX, a derivative of pBWU13 [4], carrying all F₀F₁ subunit genes with the sequences for the biotin- and the histidine-tags at the amino termini of the β and the *c* subunit genes, respectively [19]. Using *SacI* site in the β subunit gene and newly introduced *XbaI* site 323 bp downstream of the termination codon of the ε subunit gene, the sequences for the ε-Cyt and the ε-FlavR (formerly named as ε-Red and ε-Yellow, respectively) [17] were introduced. Genes for the ε-fusions with a linker sequence between the ε and the fusion proteins (ε-L-Cyt and ε-L-FlavR) [17] were also introduced.

2.2. Preparation of F_0F_1

Recombinant plasmids were introduced into the E. coli strain DK8 ($\Delta atpB-C$) [20]. Membrane vesicles (containing about 40 mg of proteins) prepared after disruption of the cells grown on glycerol were suspended in 3.2 ml of Buffer A [40 mM MES-Tricine (pH7.0 at 25° C), 10 mM MgCl₂ and 20%(w/v) glycerol] then solubilized by addition of 0.8 ml of 10%(w/v) C12E8 (final concentration of 2%). The suspension was centrifuged at $125,000 \times g$ for 60 min, and the supernatant was slowly applied to the Ni-nitrilotriacetic acid agarose column (0.6×1.5 cm, Qiagen) equilibrated with Buffer B [20 mM MES-Tricine (pH7.0 at 25 °C), 5 mM MgCl₂, 10% glycerol and 2% C₁₂E₈]. The column was washed with 6 ml of Buffer C [20 mM MES-Tricine (pH7.0 at 25 °C), 5 mM MgCl₂, 10% glycerol, 0.1% C₁₂E₈, 0.03% (w/v) ι-α-phosphatidylcholine and 20 mM imidazole]. F_0F_1 was eluted with the same buffer by increasing the imidazole concentration up to 200 mM dialyzed against Buffer C containing 25% glycerol. All procedures described above were carried out at 4 °C. Purified enzyme was quickly frozen in liquid nitrogen and stored at -80 °C until use.

2.3. DCCD sensitivities of membrane and F₀F₁ ATPase activities

Membranes (20 µg protein) or purified F_0F_1 (4 µg of protein) were treated in 100 µl of 50 mM Tris–HCl (pH8.0) buffer containing 40 µM DCCD (*N*,*N*'-dicyclohexylcarbodiimide), 2 mM MgCl₂, 300 mM KCl for 15 min at 22 °C. ATPase activity of 50 µl aliquot was assayed at 22 °C with coupled NADH oxidation in the presence of ATP regeneration system [21].

2.4. Rotation observation of immobilized enzymes

Rotations of both F_0F_1 molecules immobilized through the β subunits and the *c*-ring were observed using essentially the same procedures for F_1 rotations as described previously [18]. Briefly, a flow cell was filled with Buffer D [10 mM MOPS-KOH, 50 mM

Download English Version:

https://daneshyari.com/en/article/10755576

Download Persian Version:

https://daneshyari.com/article/10755576

Daneshyari.com