Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Biochemical and Biophysical Research Commission Commiss

A novel TK-NOG based humanized mouse model for the study of HBV and HCV infections

Keiichi Kosaka ^{a,b}, Nobuhiko Hiraga ^{a,b}, Michio Imamura ^{a,b}, Satoshi Yoshimi ^{a,b}, Eisuke Murakami ^{a,b}, Takashi Nakahara ^{a,b}, Yoji Honda ^{a,b}, Atsushi Ono ^{a,b}, Tomokazu Kawaoka ^{a,b}, Masataka Tsuge ^{a,b}, Hiromi Abe ^{a,b}, C. Nelson Hayes ^{a,b,c}, Daiki Miki ^{b,c}, Hiroshi Aikata ^{a,b}, Hidenori Ochi ^{b,c}, Yuji Ishida ^{b,d}, Chise Tateno ^{b,d}, Katsutoshi Yoshizato ^{b,d}, Tamito Sasaki ^{a,b}, Kazuaki Chayama ^{a,b,c,*}

^a Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan ^b Liver Research Project Center, Hiroshima University, Hiroshima, Japan

^c Laboratory for Digestive Diseases, Center for Genomic Medicine, The Institute of Physical and Chemical Research (RIKEN), Hiroshima, Japan

^d PhoenixBio Co., Ltd., Higashihiroshima, Japan

ARTICLE INFO

Article history: Received 20 September 2013 Available online 16 October 2013

Keywords: Human hepatocyte chimeric mouse TK-NOG mouse uPA-SCID mouse Hepatitis B virus Hepatitis C virus Human serum albumin

ABSTRACT

The immunodeficient mice transplanted with human hepatocytes are available for the study of the human hepatitis viruses. Recently, human hepatocytes were also successfully transplanted in herpes simplex virus type-1 thymidine kinase (TK)-NOG mice. In this study, we attempted to infect hepatitis virus in humanized TK-NOG mice and urokinase-type plasminogen activator-severe combined immunodeficiency (uPA-SCID) mice. TK-NOG mice were injected intraperitoneally with 6 mg/kg of ganciclovir (GCV), and transplanted with human hepatocytes. Humanized TK-NOG mice and uPA/SCID mice were injected with hepatitis B virus (HBV)- or hepatitis C virus (HCV)-positive human serum samples. Human hepatocyte repopulation index (RI) estimated from human serum albumin levels in TK-NOG mice correlated well with pre-transplantation serum ALT levels induced by ganciclovir treatment. All humanized TK-NOG and uPA-SCID mice injected with HBV infected serum developed viremia irrespective of lower replacement index. In contrast, establishment of HCV viremia was significantly more frequent in TK-NOG mice with low human hepatocyte RI (<70%) than uPA-SCID mice with similar RI. Frequency of mice spontaneously in early stage of viral infection experiment (8 weeks after injection) was similar in both TK-NOG mice and uPA-SCID mice. Effects of drug treatment with entecavir or interferon were similar in both mouse models. TK-NOG mice thus useful for study of hepatitis virus virology and evaluation of anti-viral drugs.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are serious health problems worldwide. More than 350 and 170 million people are infected with HBV and HCV, respectively [1,2]. Both types of hepatitis viruses result in the development of chronic liver infection and potentially death due to liver failure and hepatocellular carcinoma [3]. Although the chimpanzee is a useful animal model for the study of HBV and HCV infection, there are ethical restrictions and hampered by the high financial cost on the use of this animal. The immunodeficient mice with a urokinase-type plasminogen activator (uPA) transgene [4,5] or a targeted disruption of the murine fumaryl acetoacetate hydrolase (FAH) [6–10] were shown to be excellent recipients for human hepatocyte. These small animal models are available for hepatitis viruses infection [4,11], and are useful for the study of HBV and HCV biology [12–14]. However, there are disadvantages that limit the utility of this model for many applications, including excessive mortality [9].

Recently, human hepatocytes were successfully transplanted into severely immunodeficient NOG mice with the herpes simplex virus type-1 thymidine kinase (HSVtk) expressing in mouse hepatocytes (TK-NOG) [15]. Mouse liver cells expressing HSVtk

Abbreviations: ALT, alanine aminotransferase; GCV, ganciclovir; HBV, hepatitis B virus; HCV, hepatitis C virus; HSA, human serum albumin; HSVtk, herpes simplex virus type-1 thymidine kinase; IFN, interferon; PegIFN-alpha, pegylated interferonalpha; RI, repopulation index; RT-PCR, reverse transcript-polymerase chain reaction; SCID, severe combined immunodeficiency; uPA, urokinase-type plasminogen activator.

^{*} Corresponding author. Address: Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan. Fax: +81 82 255 6220.

E-mail address: chayama@hiroshima-u.ac.jp (K. Chayama).

⁰⁰⁰⁶⁻²⁹¹X/\$ - see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.bbrc.2013.10.040

were ablated after a brief exposure to ganciclovir (GCV), and transplanted human hepatocytes were stably maintained within the mouse liver without exogenous drug administration [15]. The analyses of drug interactions and pharmacokinetics have previously been reported using TK-NOG mice transplanted with human hepatocytes [15–18]. In the present study, we succeeded in infecting human hepatocyte-transplanted TK-NOG mice with HBV and HCV and showed that this mouse model is as useful as the uPA/ SCID model for the study of hepatitis viruses.

2. Materials and methods

2.1. Animal treatment

TK-NOG mice were purchased from Central Institute for Experimental Animals (CIEA, Kawasaki, Japan). Eight-weeks-old mice were injected intraperitoneally with 6 mg/kg of GCV twice a day. After two days, mice were re-injected with the same amount of GCV. Seven days after 1st GCV injection, mice were transplanted with 1 or 2 \times 10⁶ of human hepatocytes obtained from human hepatocyte transplanted uPA-SCID chimeric mice by collagenase perfusion method by intra-splenic injection. Transplanted human hepatocytes used in this study were obtained from a same donor. One week after the first GCV treatment, serum alanine aminotransferase (ALT) levels were measured (Fuji DRI-CHEM, Fuji Film, Tokyo, Japan). Infection, extraction of serum samples, and sacrifice were performed under ether anesthesia. Mouse serum concentration of human serum albumin (HSA), which correlated with the human hepatocyte repopulation index (RI) [15], was measured as previously described [5]. Generation of the uPA/SCID mice and transplantation of human hepatocytes were performed as described previously [5,12,19]. The experimental protocol was approved by the Ethics Review Committee for Animal Experimentation of the Graduate School of Biomedical Sciences. Hiroshima University.

2.2. Human serum samples

Human serum samples containing high titers of either genotype C HBV (5.3×10^6 copies/mL) or genotype 1b HCV (2.2×10^6 copies/mL) were obtained from patients with chronic hepatitis who provided written informed consent. The individual serum samples were divided into small aliquots and stored separately in liquid nitrogen until use. Mice were injected intravenously with 50 μ L of either HBV- or HCV-positive human serum. The study protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki and was approved a priori by the institutional review committee.

2.3. Quantitation of HBV and HCV

DNA and RNA extraction and quantitation of HBV and HCV by real-time polymerase chain reaction (RT-PCR) were performed as described previously [12,13,19]. Briefly, DNA was extracted using SMITEST (Genome Science Laboratories, Tokyo, Japan) and dissolved in 20 μ L H₂O, and RNA was extracted from serum samples using SepaGene RVR (Sankojunyaku, Tokyo, Japan) and reverse transcribed with a random hexamer and a reverse transcriptase (ReverTraAce; TOYOBO, Osaka, Japan) according to the instructions provided by the manufacturer. Quantitation of HBV DNA and HCV RNA was performed using Light Cycler (Roche Diagnostic, Japan, Tokyo). The lower detection limits of real-time PCR for HBV DNA and HCV RNA are 4.4 and 3.5 log copies/mL, respectively.

2.4. Histochemical analysis of mouse liver

Liver specimens of HBV-infected TK-NOG mice were fixed with 10% buffered-paraformaldehyde and embedded in paraffin blocks for histological examination. Hematoxylin-eosin and immunohistochemical staining using antibodies against HSA (Bethyl Laboratories Inc., Montgomery, TX) and hepatitis B core antigen (HBc-Ag) (DAKO Diagnostika, Hamburg, Germany) were performed as described previously [12].

2.5. Treatment with antiviral agents

Mice were treated with antiviral agents eight weeks after HBV or HCV infection, by which time stable viremia had developed. HBV-infected mice were administered either food containing 0.3 mg of entecavir/kg of body weight/day or daily intramuscular injections with 7000 IU/kg of IFN-alpha (Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan). HCV-infected mice were administered intramuscular injection with either 1000 IU/kg of IFN-alpha daily or 10 μ g/kg of PegIFN-alpha-2a (Chugai Pharmaceutical Co., Ltd., Tokyo, Japan) twice a week for three weeks.

2.6. Statistical analysis

Differences in HSA levels between TK-NOG mice and uPA-SCID mice, and incidence of infection between highly and poorly repopulated mice were examined for statistical significance using the Mann–Whitney *U*-test.

3. Results

3.1. Correlation between serum ALT level after GCV administration and the human hepatocyte index in TK-NOG mice

We analyzed the correlation between serum ALT levels after GCV injection and the human hepatocyte RI using 194 TK-NOG mice. Seven days after GCV injection when serum ALT levels had reached maximum levels [15], mice were transplanted with human hepatocytes. After transplantation of human hepatocytes, serum concentrations of HSA increased and reached plateau at 6–8 weeks. Serum ALT levels one week after GCV administration and HSA levels 8 weeks after hepatocyte transplantation showed a positive correlation, indicating that the higher serum ALT level, the higher the RI (Fig. 1A). HSA levels 8 weeks after human hepatocyte transplantation in UPA–SCID mice (Fig 1B), which indicates that mice livers were more efficiently replaced with human hepatocytes in uPA–SCID mice than in TK-NOG mice.

3.2. Infection with hepatitis viruses in humanized TK-NOG mice and uPA-SCID mice

Eight weeks after human hepatocyte transplantation, TK-NOG mice and uPA–SCID mice with HSA levels over 1.0 mg/mL were inoculated with either HBV- or HCV-positive human serum samples. Eight weeks after injection, the frequency of the development of viremia was compared between the mice with lower (<70%) and higher (≥70%) human hepatocyte RI. 70% of RI corresponds to 5.4 and 6.3 mg/dl of serum HAS in TK-NOG mice and uPA–SCID mice, respectively [5,15]. All humanized TK-NOG and uPA–SCID mice inoculated with HBV developed viremia 8 weeks after injection, irrespective of the RI (Fig. 2A). Incidence of HCV viremia was also high in TK-NOG mice regardless of the RI. In contrast, the frequency of HCV viremia was much lower in uPA–SCID mice with the RI. Only 20% (1 of 5) of uPA–SCID mice with low RI became

Download English Version:

https://daneshyari.com/en/article/10756765

Download Persian Version:

https://daneshyari.com/article/10756765

Daneshyari.com