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ARTICLE INFO ABSTRACT

Article history: Data integration and visualization are crucial to obtain meaningful hypotheses from the diversity of

Available online 1 February 2014 ‘omics’ fields and the large volume of heterogeneous and distributed data sets. In this review we focus
on network analysis as a key technique to integrate, visualize and extrapolate relevant information from

Keywords: diverse data. We first describe challenges in integrating different types of data and then focus on

?Ttnics . systematically exploring network properties to gain insight into network function. We also describe

nteractome

the relationship between network structures and function of elements that form it. Next, we highlight
the role of the interactome in connecting data derived from different experiments, and we stress the
importance of network analysis to recognize interaction context-specific features. Finally, we present
an example integration to demonstrate the value of the network approach in cancer research, and
highlight the importance of dynamic data in the specific context of signaling pathways.
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1. Omics investigated with this type of approach. Relationships between

The suffix “omics” is appended to words describing a field of
study and usually involves large scale, comprehensive and system-
atic techniques. The first use of omics in this manner was genomics
[1], and the first international project to collect the most complete
data set, a building block for genomics was the Human Genome
Project, launched in 1990 and completed in 2003 (http://www.
genome.gov/10001772). The list of completed genomes includes
170 Eukaryota organisms, almost 3500 Virus and more than 2500
Bacteria (as listed in http://www.ebi.ac.uk/genomes/; last accessed
13th Dec. 2013). Comparably, there are 277 completed proteomes
for Eukaryota organisms, more than 1600 Bacteria and more than
1100 Virus (as listed in http://www.uniprot.org/taxonomy/com-
plete-proteomes; last accessed 13th Dec. 2013). Moreover, the
structure of more than 94,000 proteins across different organisms
has been described so far (as listed in http://www.rcsb.org/pdb/
home/home.do; last accessed 13th Dec. 2013; the organism with
the highest number of structures being Homo Sapiens).

Increasing data collections enable more comprehensive analy-
ses, but coping with this data deluge is not trivial. For example,
one mass spectrometry experiment can result in thousands to
hundreds of thousands of spectra for one sample [2]. Likewise,
next-generation sequencing produces millions of reads per sample
[3]. The amount of data being generated calls for uniformity,
standardization and optimized workflows [4]. Even if these are
very basic concepts, they are not as widespread as one would ex-
pect. For example, there are 338 protein-protein interaction (PPI)
databases, 243 metabolic pathway databases and 202 signaling
pathway databases (as listed in http://www.pathguide.org/; last
accessed 13th Dec. 2013) of which only some are in a format that
supports data interchange across databases. Navigating through
these vast resources can be challenging but integrating such data
is both beneficial and increasingly necessary.

2. Integration

The emergence of high-throughput (HT) assays shifted research
from hypothesis-driven exploration to data-driven hypothesis gen-
eration. However, generating substantially more data, HT methods
in turn led to shifting from predominantly using statistical tools to
depending on computational biology approaches, especially data
mining and machine learning algorithms, to aid data analysis and
interpretation [5,6]. As the number of omics disciplines grows,
and with them the amount of data, the combination of an increas-
ing number of different perspectives can give the scientist a more
complete (and more realistic) view of the system they are studying.
Now, the challenge is data integration, and in turn integrative data
analysis [7]. For example, integrating gene expression with copy
number variation data, mutation status, methylation profile
and microRNA targeting can highlight the key players in a
specific disease. Complex, multifactorial diseases can only be fully

these data and entities can effectively be represented as graphs.
Thus, network visualization and analysis is becoming one of the
key tools for integrative analysis.

3. Accurate representation of omics data

Data integration requires immense attention to information
representation, annotation and support for accurate data exchange.
Integrative computational biology supports modeling biological
processes using data integrated across many omics fields. To
address this, numerous data architectures have been established
to effectively and efficiently collect, store, annotate and exchange
data. These architectures vary in scope, intent, and standards
they use. They are continuously being updated to represent the
most current knowledge, and as such will contain inconsistencies
and incompletions. Often, researchers rely on one or many
such architectures to integrate pre-existing research with their
own, or to share their own results. Understanding the nature of
the architectures available as well as being able to accurately
specify which have been used is critical to reducing ambiguities
in this process, and improves the quality and utility of published
results.

3.1. Data collection and storage

Information in omics data changes frequently, arriving in the
form of peer-reviewed studies. These can be small-scale, hypothe-
sis-based studies with a small number of results, or wider scale HT
studies with thousands of results. Collecting and storing these
results has necessitated the use of many diverse omics databases.
These databases vary greatly in scope; for our purposes, they
address entities, relationships between them, and annotations.
Entity databases cover proteins, genes, small molecules, or other
biologically relevant objects, and include for example UniProt [8],
GeneCards [9], RefSeq [10], and DrugBank [11,12]. Relationship
databases describe how these entities relate to each other. These
include, but are not limited to, protein or gene interactions, drug
targeting, and biological pathways. Some examples include IntAct
[13], I2D [14-16], BioGRID [17], and KEGG [18]. IMEX consortium
[19] and PSICQUIC registry [20] are notable collections of interac-
tion databases that share representation and curation workflow
standards [19]. Annotation databases attempt to create indices of
terms and definitions. These terms are intended to unambiguously
describe entities or relationships between them, often structured
as an ontology, which further describes how terms relate to each
other in a standard way. Some examples include Gene Ontology
[21] and the numerous controlled vocabularies included in the
PSI-MI standard [22]. Some databases may rely on each other’s
standards: for example, UniProt and other sequence databases
may contain references to relevant Gene Ontology terms in their
records. Resources such as GeneCards [23] integrate heterogeneous
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