FISEVIER Contents lists available at SciVerse ScienceDirect ### Biochemical and Biophysical Research Communications journal homepage: www.elsevier.com/locate/ybbrc # Store-operated calcium entry induced by activation of Gq-coupled alpha1B adrenergic receptor in human osteoblast Daisuke Kodama, Akifumi Togari* Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan #### ARTICLE INFO Article history: Received 12 June 2013 Available online 24 June 2013 Keywords: Osteoblast Sympathetic nervous system Gq protein-coupled α_1 -adrenergic receptor Store-operated Ca²⁺ channel #### ABSTRACT Recent studies have revealed that the sympathetic nervous system is involved in bone metabolism. We previously reported that noradrenaline (NA) suppressed K⁺ currents via Gi/o protein-coupled alpha_{1B}-adrenergic receptor (α_{1B} -AR) in human osteoblast SaM-1 cells. Additionally, it has been demonstrated that the intracellular Ca²⁺ level ([Ca²⁺]_i) was increased by NA via α_{1B} -AR. In this study, we investigated the signal pathway of NA-induced [Ca²⁺]_i elevation by using Ca²⁺ fluorescence imaging in SaM-1 cells. NA-induced [Ca²⁺]_i elevation was suppressed by pretreatment with a PLC inhibitor, U73122. This suggested that the [Ca²⁺]_i elevation was mediated by Gq protein-coupled α_{1B} -AR. On the other hand, NA-induced [Ca²⁺]_i elevation was completely abolished in Ca²⁺-free solution, which suggested that Ca²⁺ influx is the predominant pathway of NA-induced [Ca²⁺]_i elevation. Although the inhibition of K⁺ channel by NA caused membrane depolarization, the [Ca²⁺]_i elevation was not affected by voltage-dependent Ca²⁺ channel blockers, nifedipine and mibefradil. Meanwhile, NA-induced [Ca²⁺]_i elevation was abolished following activation of store-operated Ca²⁺ channel by thapsigargin. Additionally, the [Ca²⁺]_i elevation was suppressed by store-operated Channel inhibitors, 2-APB, flufenamate, GdCl₃ and LaCl₃. These results suggest that Ca²⁺ influx through store-operated Ca²⁺ channels plays a critical role in the signal transduction pathway of Gq protein-coupled α_{1B} -AR in human osteoblasts. © 2013 Elsevier Inc. All rights reserved. #### 1. Introduction Bones are constantly remodeled throughout life. Bone homeostasis is maintained by a balance between the activities of bone-forming osteoblasts and bone-resorbing osteoclasts. In recent years, many studies have demonstrated that the sympathetic nervous system is involved in bone metabolism [1–5]. Osteoporosis can be induced by continuously high sympathetic tone, which is recovered from by using β -adrenergic receptor (β -AR) blocker [6,7]. Previous studies, including ours, showed that mRNAs of α -and β -ARs were expressed in human osteoblasts [1,8,9]. Although a number of studies have suggested that up-regulation of osteoclastogenesis and osteoclastic activity via β -AR caused enhancement of bone resorption [3,10,11], the physiological role of α -ARs in bone metabolism has been less well studied. E-mail addresses: kodamads@dpc.aichi-gakuin.ac.jp (D. Kodama), togariaf@dpc.aichi-gakuin.ac.jp (A. Togari). We previously reported that noradrenaline (NA) increased cell proliferation by suppressing K⁺ channels via Gi/o-coupled α_{1B} -AR in human osteoblast SaM-1 cells. On the other hand, application of NA also increased the intracellular Ca²⁺ concentration ([Ca²⁺]_i) via Gq protein-coupled α_{1B} -AR [12]. In general, NA-induced [Ca²⁺]_i elevation is mediated by Ca²⁺ release from endoplasmic reticulum via the Gq/phosphoinositide-phospholipase C (Gq/PI-PLC) pathway. However, recent studies have demonstrated that Ca²⁺ influx through Ca²⁺-permeable channels and Na⁺/Ca²⁺ exchanger is involved in α_1 -AR-mediated [Ca²⁺]_i elevation in several tissues [13–19]. The molecular component of Ca²⁺ influx and its importance in Ca²⁺ signaling differ among tissues. In this study, we investigated the signal transduction pathway of NA-induced $[Ca^{2+}]_i$ elevation in human osteoblast SaM-1 cells. We observed that α_1 -AR-mediated $[Ca^{2+}]_i$ elevation was suppressed not only by a PLC inhibitor, U73122, but also by removing extracellular Ca^{2+} . Interestingly, the response to NA was completely abolished in Ca^{2+} -free extracellular solution. This suggested that Ca^{2+} influx plays a predominant role in α_1 -AR-mediated Ca^{2+} signaling. Additionally, NA-induced $[Ca^{2+}]_i$ elevation was inhibited by pretreatment with either thapsigargin or store-operated Ca^{2+} channel inhibitors. These results suggested that activation of Ca^{2+} Abbreviations: 2-APB, 2-aminoethyl diphenylborate; AR, adrenergic receptor; [Ca²⁺], intracellular Ca²⁺ concentration; MG-63, human osteosarcoma-derived osteoblast-like cell line; NA, noradrenaline; PDL, population doubling level; PI-PLC, phosphoinositide-phospholipase C; PLC, phospholipase C; SaM-1, human periosteum-derived osteoblastic cells. ^{*} Corresponding author. Fax: +81 52 752 5988. protein-coupled- α_1 -AR induces $[Ca^{2+}]_i$ elevation mainly via store-operated Ca^{2+} channels in human osteoblasts. #### 2. Materials and methods #### 2.1. Cell culture The human osteoblasts used in this study, SaM-1 cells, were provided by Dr. Koshihara, who prepared them with informed consent from an explant of ulnar periosteum tissue from a 20-year-old male patient who underwent curative surgery [20]. These cells have a mitotic lifespan of 34 population doubling levels (PDLs), and we used them at a PDL of 22–24 for our experiments. We confirmed that the cells were capable of calcifying at this level [21]. The cells were cultured in alpha-modified minimum essential medium (Invitrogen, Carlsbad, CA, USA) containing 10% fetal bovine serum (Moregate Biotech, Bulimba, Australia) and 60 μ g/ml kanamycin at 37 °C in 95% humidified air containing 5% CO₂. The growth media were renewed every 2 days. For optical measurements of [Ca²⁺]_i, they were seeded on a glass cover slip 1–2 days before the experiments. #### 2.2. Optical measurements of $[Ca^{2+}]_i$ We used Cal-520 AM, a highly sensitive Ca²⁺ fluorescent dye, for optical measurements of [Ca²⁺]_i. SaM-1 cells were loaded with Cal-520 AM (2.5 µM) for 30 min and washed three times with extracellular solution, which contained 124 mM NaCl, 3 mM KCl, 1 mM MgCl₂, 2 mM CaCl₂, 14 mM p-glucose and 10 mM HEPES (pH adjusted to 7.4 with NaOH), just before use. Then, the glass cover slip was transferred to a superfusion chamber on the stage of a confocal laser scanning microscope (LSM710, Carl Zeiss, Hallbergmoos, Germany). Cells were superfused with extracellular solution at a rate of 2 ml/min. The fluorescence was recorded every 2 s at room temperature at an excitation wavelength of 488 nm and the data were analyzed using ZEN 2009 software (Carl Zeiss). Stock solutions of drugs were prepared and diluted 1000-fold into extracellular solution just before use. Unless otherwise noted, drugs were bath-applied and fluorescence was recorded from the cells that showed a response to repeated application of NA. #### 2.3. Chemicals L-Noradrenaline, prazosin, an α_1 -AR selective antagonist, U73122, a PLC inhibitor, nifedipine, an L-type voltage-dependent Ca²⁺ channel blocker, mibefradil, a T-type voltage-dependent Ca²⁺ channel blocker, 2-aminoethyl diphenylborate (2-APB), flufenamate, GdCl₃ and LaCl₃ were purchased from Sigma Aldrich (St. Louis, MO, USA). KB-R-7943, a Na⁺/Ca²⁺ exchanger reverse mode inhibitor, was purchased from Tocris Biosciences (Bristol, UK). Thapsigargin was purchased from Wako (Osaka, Japan). Cal-520 AM was purchased from COSMO BIO (Tokyo, Japan). Cal-520 AM, U73122, nifedipine, KB-R-7943, thapsigargin, 2-APB and flufenamate were dissolved in dimethyl sulfoxide. All other chemicals used were of reagent grade. #### 2.4. Statistical analysis All data are expressed as mean \pm SEM. In the optical measurements of $[Ca^{2+}]_i$, fluorescence intensity recorded from each cell was used for analysis. The data were recorded from more than 3 independent experiments. The comparison of NA-induced $[Ca^{2+}]_i$ elevation before and after drug treatment was carried out with the paired t-test. For multiple comparisons, the two-tailed t-test combined with Bonferroni's correction following one-way analysis of variance was used. Differences with *p* values <0.05 were considered significant. #### 3. Results #### 3.1. Involvement of Ca^{2+} influx in NA-induced $[Ca^{2+}]_i$ elevation Consistent with previous studies, bath application of NA dose-dependently increased [Ca²⁺]_i and the response was significantly inhibited by prazosin and a PLC inhibitor, U73122 (Fig. 1A–C). To examine whether Ca²⁺ influx was involved in the NA-induced [Ca²⁺]_i elevation, we used Ca²⁺-free extracellular solution, which contained 5 mM EGTA instead of 2 mM CaCl₂. In the Ca²⁺-free extracellular solution, NA had no effect on Ca²⁺ fluorescence (Fig. 1D). Additionally, we examined the effects of NA on [Ca²⁺]_i elevation induced by switching perfusate from Ca²⁺-free solution to normal solution. Pretreatment with NA significantly increased the Ca²⁺ influx from extracellular fluid (Fig. 1E). #### 3.2. Elucidation of Ca²⁺-influx pathway Previous studies have demonstrated that activation of α_1 -AR can induce Ca^{2+} influx via several kinds of pathway, including voltage-dependent Ca^{2+} channel, reverse mode of Na^+/Ca^{2+} exchanger, store-operated Ca^{2+} channel and receptor-operated Ca^{2+} channel in several tissues [13–19]. First, we examined the involvement of voltage-dependent Ca²⁺ channels. The expression of L-type and T-type voltage-dependent Ca²⁺ channel families was previously reported in osteoblasts [22,23]. However, neither nifedipine, an L-type voltage-dependent Ca²⁺ channel blocker, nor mibefradil, a T-type voltage-dependent Ca²⁺ channel blocker, inhibited NA-induced [Ca²⁺]_i elevation (Fig. 2A, B and D). In general, Na^+/Ca^{2+} exchanger plays an important role in Ca^{2+} homeostasis by pumping Ca^{2+} out of the cytosol. On the other hand, it was suggested that local accumulation of Na^+ drove Na^+/Ca^{2+} exchanger in reverse mode, and the mechanism was involved in α_1 -AR-mediated $[Ca^{2+}]_i$ elevation [16]. However, Na^+/Ca^{2+} exchanger inhibitor, KB-R-7943, did not suppress, but rather enhanced NA-induced $[Ca^{2+}]_i$ elevation in SaM-1 cells (Fig. 2C and D). Next, we examined the involvement of store-operated and receptor-operated Ca²⁺ channels. Passive depletion of endoplasmic reticulum Ca²⁺ store by a sarco/endoplasmic reticulum Ca²⁺-ATP-ase inhibitor, thapsigargin, activated store-operated Ca²⁺ channels. Bath application of NA had no effect on Ca²⁺ fluorescence following treatment with thapsigargin (Fig. 3A). This result suggested that NA-induced Ca²⁺ influx was mediated through store-operated Ca²⁺ channels, but not through receptor-operated Ca²⁺ channels. Additionally, we examined the effects of store-operated channel inhibitors, 2-APB, flufenamate, GdCl₃ and LaCl₃, on NA-induced [Ca²⁺]_i elevation. In the presence of any of these inhibitors, NA-induced [Ca²⁺]_i elevation was significantly suppressed (Fig. 3B–E). #### 4. Discussion Our previous study suggested that α_{1B} -AR can be coupled to both Gq-protein and Gi/o-protein, and NA increased $[Ca^{2+}]_i$ via the Gq/PI-PLC pathway and also inhibited K^+ current via the Gi/o/G $\beta\gamma$ pathway in human osteoblast SaM-1 cells [12,24]. In this study, NA-induced $[Ca^{2+}]_i$ elevation was significantly suppressed by a PLC inhibitor, U73122. This result is in agreement with our conventional understanding. On the other hand, NA-induced $[Ca^{2+}]_i$ elevation was completely abolished in Ca^{2+} -free extracellular fluid. Additionally, pretreatment with NA significantly #### Download English Version: ## https://daneshyari.com/en/article/10758513 Download Persian Version: https://daneshyari.com/article/10758513 <u>Daneshyari.com</u>