

Contents lists available at SciVerse ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Nickel inhibits β -1 adrenoceptor mediated activation of cardiac CFTR chloride channels

Palash P. Barman, Hongwei Cheng, Jules C. Hancox*, Andrew F. James*

Cardiovascular Research Laboratories, School of Physiology & Pharmacology and Bristol Heart Institute, University of Bristol, Bristol BS8 1TD, UK

ARTICLE INFO

Article history: Received 22 January 2013 Available online 31 January 2013

Keywords: Rabbit cardiomyocytes PKA-dependent Cl⁻ current CFTR CFTR-inhibitor Nickel Ni²*

ABSTRACT

Cardiac ventricular myocytes exhibit a protein kinase A-dependent Cl^- current (I_{CLPKA}) mediated by the cystic fibrosis transmembrane conductance regulator (CFTR). There is conflicting evidence regarding the ability of the divalent cation nickel (Ni2+), which has been used widely in vitro in the study of other cardiac ionic conductances, to inhibit I_{CLPKA} . Here the action of Ni²⁺ on I_{CLPKA} activated by β -adrenergic stimulation has been elucidated. Whole-cell patch-clamp recordings were made from rabbit isolated ventricular myocytes. Externally applied Ni^{2+} blocked I_{CLPKA} activated by 1 μ M isoprenaline with a log IC_{50} (M) of -4.107 ± 0.075 ($IC_{50} = 78.1 \,\mu\text{M}$) at $+100 \,\text{mV}$ and -4.322 ± 0.107 ($IC_{50} = 47.6 \,\mu\text{M}$) at -100 mV. Thus, the block of $I_{CL,PKA}$ by Ni²⁺ was not strongly voltage dependent. Ni²⁺ applied internally via the patch-pipette was ineffective at inhibiting isoprenaline-activated $I_{\text{CI,PKA}}$, but in the same experiments the current was suppressed by external Ni²⁺ application, indicative of an external site of Ni²⁺ action. In the presence of 1 μ M atenolol isoprenaline was ineffective at activating I_{CLPKA} , but in the presence of the β 2-adrenoceptor inhibitor ICI 118,551 isoprenaline still activated Ni²⁺-sensitive I_{CLPKA} . Collectively, these data demonstrate that Ni^{2+} ions produce marked inhibition of β 1-adrenoceptor activated ventricular $I_{Cl.PKA}$ at submillimolar [Ni²⁺]: an action that is likely to involve an interaction between Ni²⁺ and β 1-adrenoceptors. The concentration-dependence for I_{CLPKA} inhibition seen here indicates the potential for confounding effects on I_{CLPKA} to occur even at comparatively low Ni²⁺ concentrations, when Ni²⁺ is used to study other cardiac ionic currents under conditions of β-adrenergic agonism.

© 2013 Elsevier Inc. All rights reserved.

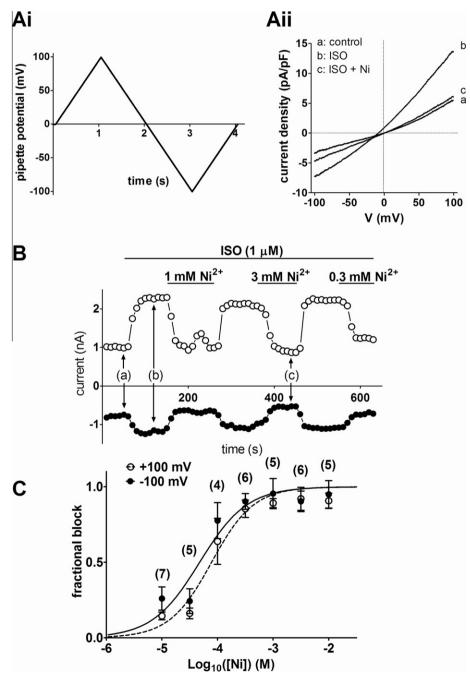
1. Introduction

A number of distinct chloride conductances have been identified that may contribute to the normal and pathological function of cardiac myocytes [1,2]. These include swelling-activated Cl⁻ current [1,2], Ca²⁺-activated Cl⁻ current [1,2], anionic background current [3,4] and cAMP/PKA-activated Cl⁻ current (I_{Cl.PKA}) activated by β-adrenergic agonists [2,5,6]. The channels that carry I_{CLPKA} are mediated by a cardiac isoform of the cystic fibrosis transmembrane conductance regulator protein (CFTR: [2,7–9]). Sympathetic activation of $I_{CL,PKA}$ may act to counter the effects of β -adrenergic stimulation of L-type calcium current ($I_{Ca,L}$); consequently $I_{Cl,PKA}$ may contribute to the rate-dependent shortening of ventricular action potentials [10,11]. However, the direct measurement of I_{CLPKA} from cardiac cells and of its modulation of action potentials under physiological recording conditions is confounded by a lack of potent and selective pharmacological CFTR inhibitors [2]. Consequently, cardiac $I_{\text{Cl.PKA}}$ is usually studied under 'selective' recording conditions, with other overlapping conductances inhibited.

The *in vitro* study of β-adrenergic modulation of some other cardiac ionic conductances is facilitated by the availability of selective pharmacological inhibitors [12,13], which in principle allows these to be separated from β -adrenoceptor activation of I_{CLPKA} . However, this is not necessarily the case for all the ion currents of cardiac myocytes. The electrogenic Na⁺-Ca²⁺ exchanger (NCX) is present throughout the heart and plays an important role in Ca²⁺ ion handling and in shaping cardiac action potentials [14,15]. Similar to I_{CLPKA} , cardiac NCX current (I_{NCX}) is difficult to study under normal physiological conditions due to a lack of NCX-selective pharmacology. Direct measurements of I_{NCX} have therefore tended to involve the inhibition of overlapping voltage and time-dependent conductances and I_{NCX} measurement as current sensitive to millimolar concentrations of nickel ions (Ni²⁺) [16-18]. Selective measurement conditions for cardiac I_{NCX} exclude overlapping I_{CLPKA} in the absence of PKA stimulation, but in the presence of such stimulation there is potential for both currents to be activated [15,19,20]. The results from some studies are suggestive that the use of Ni²⁺ to study I_{NCX} under conditions of β -adrenergic agonism may be complicated by an inhibitory effect of Ni^{2+} on β -adrenoceptor activated I_{CLPKA} [19,20], although other data appear inconsistent with this possibility [21]. The present study was therefore undertaken to determine, under CFTR-selective recording conditions, the

^{*} Corresponding authors. Fax: +44 (0) 117 331 2288. E-mail addresses: jules.hancox@bristol.ac.uk (J.C. Hancox), a.james@bristol.ac.uk (A.F. James).

response of β-adrenoceptor activated cardiac I_{CLPKA} to Ni²⁺. The results obtained demonstrate a marked, concentration-dependent inhibitory modulation by Ni²⁺ of β1-adrenoceptor mediated I_{CLPKA} .


Ethics Committee of University of Bristol and conformed to the UK Animals (Scientific Procedures) Act, 1986. Prior to use, myocytes were stored at 4 °C in Kraft–Brühe (KB) solution [22,23].

2. Methods

Right ventricular cardiomyocytes were isolated from the hearts of Langendorff-perfused male New Zealand White rabbits as described previously [22]. All procedures were approved by the

2.1. Electrophysiological recording and data acquisition

Whole-cell patch-clamp recordings were made at 37 °C. The data acquisition and recording methods used here have been reported previously [20,24]. Cells were superfused with normal

Fig. 1. The effect of extracellular Ni²⁺ on isoprenaline-activated I_{CLPKA} . (A) Panel (Ai) shows the voltage-ramp protocol (holding potential = 0 mV, frequency of application 1/10 s) used for recording Cl⁻ currents. Panel (Aii) shows representative currents, plotted against voltage, obtained during the descending phase of the ramp saw-tooth. Letters indicate traces obtained from the time-points indicated in panel (B). (B) Representative time course of an experiment with currents sampled at +100 mV (open circles) and -100 mV (filled circles) during saw-tooth voltage-ramps; the solid bars at the top indicate application of 1 μ M isoprenaline (ISO) and Ni²⁺ at the concentrations indicated. (C) Concentration-response relationship of the effect of Ni²⁺ on I_{CLPKA} . Concentration-responses are shown at +100 mV (open circles) and -100 mV (filled circles). The 'n' numbers at each respective concentration are shown in parentheses. Solid and dashed lines represent fits to the data with Eq. (2) at -100 mV and +100 mV respectively. The fitted $\log IC_{50}$ (M) at +100 and -100 mV were respectively -4.107 ± 0.075 and -4.322 ± 0.101 ; the $n_{\rm H}$ values for the fits were 1.145 ± 0.187 at +100 mV and 1.00 mV

Download English Version:

https://daneshyari.com/en/article/10759671

Download Persian Version:

https://daneshyari.com/article/10759671

<u>Daneshyari.com</u>