

Contents lists available at SciVerse ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Dimerization of pro-oncogenic protein Anterior Gradient 2 is required for the interaction with BiP/GRP78

Joohyun Ryu^{a,d}, Sung Goo Park^a, Phil Young Lee^a, Sayeon Cho^b, Do Hee Lee^c, Gwang Hoon Kim^d, Jeong-Hoon Kim^{a,*}, Byoung Chul Park^{a,*}

- ^a Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Republic of Korea
- ^b College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
- ^c Department of Biotechnology, College of Natural Sciences, Seoul Women's University, Seoul, Republic of Korea
- ^d Department of Biology, Kongju National University, Gongju 314-701, Republic of Korea

ARTICLE INFO

Article history: Received 20 November 2012 Available online 4 December 2012

Keywords:
AGR2
ER stress
UPR signaling pathway
Dimerization

ABSTRACT

Anterior Gradient 2 (AGR2), an ER stress-inducible protein, has been reported to be localized in endoplasmic reticulum (ER) and its level is elevated in numerous metastatic cancers. Recently, it has been demonstrated that AGR2 is involved in the control of ER homeostasis. However, the molecular mechanism how AGR2 regulates ER stress response remains unclear. Herein we show that AGR2 homo-dimerizes through an intermolecular disulfide bond. Moreover, dimerization of AGR2 attenuates ER stress-induced cell death through the association with BiP/GRP78. Thus, these results suggest that dimerization of AGR2 is crucial in mediating the ER stress signaling pathway.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The unfolded protein response (UPR) signaling pathway is a cellular stress response initiated by BiP/GRP78, a central regulator of ER processes including protein biogenesis, signal transduction, and calcium homeostasis [1-5]. In the resting state, BiP/GRP78 is associated with ER stress transducers such as inositol-requiring kinase 1α (IRE1 α), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). Upon ER stress, the UPR signaling pathway is triggered by dissociation of BiP/GRP78 from IRE1α and PERK, which are then activated by oligomerization and phosphorylation in the ER outer membrane [6]. The activated UPR signaling pathway attenuates the translation of newly synthesized protein to prevent further translational loading and to restore normal ER function. Furthermore, activation of UPR signaling contributes to tumor cell survival [7]. BiP/GRP78 knockdown suppresses tumor growth in nude mice [8]. XBP1 and PERK are also required for tumor growth. XBP1 knockdown does not yield transplantable tumors in nude mice [9]. Similarly, PERK knockdown reduces the rate of tumor growth in vivo [10,11].

Human Anterior Gradient 2 (AGR2) was identified as a homologue of *Xenopus laevis* XAG-2, which serves an essential role during neural development [12,13]. In humans, AGR2 is elevated in most metastatic adenocarcinomas (e.g., breast, pancreas, prostate,

gastric, esophagus, liver, lung, and colon) [14–21]. AGR2 is induced by various stresses such as hypoxia, serum depletion, and ER stress [22,23]. The malignant tumor environment, which produces hypoxic stress, triggers ER stress; this stress response in solid tumors is linked to the unfolded protein response (UPR) signaling pathway [7,10,24–28]. Over-expression of AGR2 promotes tumor growth and a metastatic phenotype *in vivo* and *in vitro* [29]. AGR2 silencing also affects not only the UPR signaling pathway but also ER stress induced autophagy [30]. Although numerous reports claim that AGR2 is involved in the UPR signaling pathway and ER stress-induced cell death, the molecular mechanism linking AGR2 to the UPR signaling pathway has not been described yet.

In the present study, we demonstrated that AGR2 forms a homo-dimer through an intermolecular disulfide bond in human colon cancer cell, Hct8. We also showed that dimerization of AGR2 attenuates ER stress induced cell death and its dimerization is required for the interaction with BiP/GRP78. Thus, these results may imply that dimerization of AGR2 is critical step to modulate UPR signaling pathway.

2. Materials and methods

2.1. Cell culture and treatment

Hct8 (human colon adenocarcinoma cell line) and HeLa cells were cultured in Dulbecco's Modified Eagle Media (DMEM) containing 10% fetal bovine serum (FBS) at 37 °C under a 5% CO₂

^{*} Corresponding authors. Fax: +82 42 860 4269. E-mail addresses: jhoonkim@kribb.re.kr (J.-H. Kim), parkbc@kribb.re.kr (B.C.

atmosphere. Cells (0.5–1 \times 10^6 cells/well) were plated and then incubated for various periods with 2 $\mu g/mL$ tunicamycin (Sigma), 0.25 μM thapsigargin (Sigma) to induce ER stresses. All experiments were repeated at least 3 times to ensure reproducibility.

2.2. Expression plasmids and transfection

Full-length cDNA clones encoding human AGR2 and BiP/GRP78 were purchased from Invitrogen and subcloned into a mammalian expression vector. The AGR2 and BiP/GRP78 coding sequences were inserted into pCMV-Tag 1 (Agilent Technologies) with no tag and pcDNA3.1 zeo (+) with an N-terminal FLAG (or HA) using the *BamHI/XhoI* sites. A FLAG tag was inserted into the full AGR2 sequence, based on a previously reported FLAG-AGR2 construct [31]. pCMV-Tag 1 and pcDNA3.1 zeo (+) AGR2 [C81S] mutant constructs were generated by PCR-based site-directed mutagenesis. All constructs were verified by DNA sequencing from both directions. Transfection of the plasmids (1 μg of DNA unless otherwise indicated) into cells was conducted using Lipofectamine 2000 reagent (Invitrogen).

2.3. Western blotting

Approximately 48 h after transfection, cells were harvested, washed twice with ice-cold PBS, and lysed in NP-40 lysis buffer (20 mM Tris-HCl, pH 7.5; 137 mM NaCl; 1 mM EDTA; 1% NP-40; 10% glycerol) supplemented with protease inhibitor and phosphatase inhibitor (Roche). The cell lysate was clarified by centrifugation (13,000 rpm) for 20 min at 4 °C. The proteins (10–30 μg) in the supernatant were separated by SDS-PAGE, transferred to PVDF membrane (Millipore), probed with the appropriate antibodies, and then visualized by using an ECL kit (Pierce). Tubulin was used as a loading control in all Western blots. Primary antibodies used were as follows: AGR2 (Santa Cruz and Abcam), tubulin, FLAG (Sigma), p-PERK (Santa Cruz), p-IRE1α (Abcam), BiP/GRP78, HA, PERK, IRE1α, PARP, or caspase-3 (Cell Signaling).

2.4. Immunoprecipitation

Immunoprecipitation of FLAG-tagged AGR2 and BiP/GRP78 was performed using anti-FLAG M2 affinity gels (Sigma). To isolate FLAG-tagged proteins, 500–600 μg of cell lysate was mixed with 20 μL of affinity gel at 4 °C for 6 h with mild shaking. The antigen–antibody complexes were collected by centrifugation at 3000 rpm for 1 min, washed 3–5 times with NP-40 lysis buffer, and then boiled with $1\times$ SDS sampling buffer for 5 min at 95 °C to elute the proteins from the affinity gels. The eluted proteins were analyzed by Western blotting.

2.5. Cell viability assay

Cell viability under ER stress conditions was determined using the Cell Counting Kit-8 (CCK8, DOJINDO Laboratories). Briefly, cells (5×10^3 cells/well) cultured in a 96-well plate were treated with tunicamycin or thapsigargin for 60 h. After treatment, $10~\mu L$ of CCK8 assay solution was added and the cultures were incubated for 1 h. Absorbance at 450 nm was measured using an ELISA reader. Percent viability was calculated using empty vector as 100%.

2.6. Chemical crosslinking

Immediately before use, disuccinimidyl suberate (DSS) or bis[sulfosuccinimidyl] suberate (BS³)was dissolved in DMSO or water. Cells were harvested and washed 3 times with ice-cold PBS. The pelleted cells were resuspended in 1 mL PBS, and then chemical cross-linkers were added to each cell suspension. The

cross-linked cells were incubated for 30–60 min with mild shaking at room temperature, and then quenched by quenching buffer (1 M tris, pH 7.5) to a final concentration of 15 mM for 15 min at room temperature to stop the chemical reaction. The chemically cross-linked cells were subjected to Western blot analysis.

2.7. Statistical analysis

All quantitative data were analyzed using an independent Student's t-test and considered significant at p < 0.05.

3. Results

3.1. AGR2 forms a homo-dimer through an intermolecular disulfide bond

Our group had previously identified that AGR2 is associated with the high metastatic potential in human gastric cancer cell [32]. During in pursuit of the function of AGR2, we observed that bacterially expressed AGR2 protein migrates approximately 34 kDa, corresponding to its dimeric form in the gel filtration chromatography (data not shown). AGR2 contains a protein disulfide isomerase (PDI)-like domain that consists of a CXXS domain, called the Tx-like domain (Fig. 1A). Although it has been reported that AGR2 forms heterodimers with MUC2 through the disulfide bond in mucus-producing cells using Cys81 residues [31], this results led us to examine this idea that AGR2 may form a dimer in cells. To test this idea, chemical crosslinking agents (DSS and BS3 intraand extracellular cross-linkers, respectively) were applied to Hct8 cells and cell extracts were analyzed by Western blotting. Consequently, 17 and 34 kDa bands were observed, corresponding to monomeric and dimeric AGR2, respectively (Fig. 1B). To investigate whether this dimerization is derived from the intermolecular disulfide bond, we prepared an AGR2 mutant in which cysteine 81 was substituted with serine (CS), FLAG tagged wild-type AGR2 and CS mutant AGR2 were overexpressed in Hct8 cells. Then cell extracts were subjected to non-reducing SDS-PAGE and were analyzed by Western blotting using anti FLAG antibodies. The dimer form of CS-mutant AGR2 was not seen in non-reducing SDS-PAGE whereas that of wild-type AGR2 was observed (Fig. 1C), indicating that AGR2 forms a homo-dimer through an intermolecular disulfide bond.

3.2. Dimerization of AGR2 attenuates ER stress-induced cell death

AGR2 has been identified as a tumorigenic and metastatic marker [15,17,20,33-35]. In tumor cells, elevated AGR2 level was correlated with cell proliferation [29,36,37], although the underlying mechanism remains unclear. As the silencing of AGR2 impaired the UPR pathway [30], we speculated whether overexpression of AGR2 may also affect the UPR signaling pathway. Thus, we examined the levels of phosphorylated PERK and phosphorylated IRE1 α when AGR2 was over-expressed. In the absence of ER stresses, overexpression of FLAG-tagged AGR2 induced phosphorylation of both PERK and IRE1 α in a dose-dependent manner (Fig. 2A). To examine the role of AGR2 dimerization, wild-type AGR2 or the CS mutant was over-expressed. When wild-type AGR2 was expressed, phosphorylated PERK and phosphorylated IRE1 increased. However, over-expression of the CS mutant did not induce either PERK or IRE1 phosphorylation (Fig. 2B), indicating that dimerization of AGR2 is important for the activation of the UPR signaling pathway. We then examined whether over-expression of ARG2 influences cell viability upon ER stresses such as tunicamysin and thapsigargin. Over-expression of wild-type AGR2 rendered cells resistant to ER stresses (Fig. 2C), which is contrast to the effects

Download English Version:

https://daneshyari.com/en/article/10760357

Download Persian Version:

https://daneshyari.com/article/10760357

<u>Daneshyari.com</u>