Contents lists available at SciVerse ScienceDirect



**Biochemical and Biophysical Research Communications** 



journal homepage: www.elsevier.com/locate/ybbrc

# Evidence that truncated TrkB isoform, TrkB-Shc can regulate phosphorylated TrkB protein levels

# Jenny Wong\*, Brett Garner

Illawarra Health and Medical Research Institute and the School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia

#### ARTICLE INFO

Article history: Received 28 February 2012 Available online 7 March 2012

*Keywords:* Brain-derived neurotrophic factor Shc Protein stability

# ABSTRACT

Tropomyosin receptor kinase B (TrkB) is best known as the receptor for brain-derived neurotrophic factor (BDNF). In humans, three major isoforms of TrkB, the full-length receptor (TrkB-TK+) and two C-terminal truncated receptors (TrkB-TK- and TrkB-Shc) are expressed in various tissues. In comparison to TrkB-TK+ and TrkB-TK-, TrkB-Shc is less well characterized. In this study, we analyzed the biological function of the TrkB-Shc receptor in response to exogenous BDNF treatment. In experiments transiently overexpressing TrkB-Shc in CHOK1 cells, we found that TrkB-Shc protein levels were rapidly decreased when cells were exposed to exogenous BDNF. When we assessed the functional impact of TrkB-Shc on TrkB-TK+ activity, we found that phosphorylated TrkB-TK+ protein levels were significantly decreased in the presence of TrkB-Shc and moreso following BDNF exposure. Interestingly, while the reduction of phosphorylated TrkB-Shc protein levels in response to exogenous BDNF exposure to regulate TrkB-Shc following BDNF exposure, the stability of TrkB-Shc protein itself was increased. Our findings suggest that cells may increase TrkB-Shc protein levels in response to exogenous BDNF exposure to regulate TrkB-TK+ activity by increasing degradation of activated receptor complexes as a means to prevent overactivation or inappropriate temporal and spatial activation of BDNF/TrkB-TK+ signaling.

Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.

# 1. Introduction

Tropomyosin receptor kinase B (TrkB) is best known as the receptor for brain-derived neurotrophic factor (BDNF), although it has also been demonstrated to bind neurotrophin-4/5 and neurotrophin-3 [1,2]. TrkB is a member of the Trk receptor family of type III receptor tyrosine kinases that is linked to various cell signaling cascades including Akt, ERK1/2, and PLC $\gamma$ . The mammalian full-length TrkB receptor (TrkB-TK+) was discovered more than two decades ago and since then at least 36 possible alternative transcript variants and protein isoforms have been identified [3]. In humans, three major isoforms of TrkB, the full-length and two C-terminal truncated receptors are expressed.

The full-length TrkB receptor, TrkB-TK+, consists of an N-terminal signal sequence followed by numerous domains including a cysteine- and leucine-rich sequence followed by a second cysteine-rich domain, 2 immunoglobulin (Ig)-like domains that also include the BDNF-binding region, a transmembrane domain, an Shc-binding motif, a catalytic tyrosine kinase domain near the C-terminus that is necessary for activating second messenger signaling [1,4], and a C-terminal PLC $\gamma$ -docking site. TrkB-TK+ is the principal mediator of the neurotrophic effects of BDNF. Upon ligand binding, monomeric TrkB-TK+ homodimerizes and undergoes trans-phosphorylation at key tyrosine residues in the C-terminal domain that couple it to downstream signaling pathways.

The two truncated TrkB receptor isoforms include TrkB-TK– and TrkB-Shc. Both truncated isoforms are generated from alternatively spliced transcripts and are truncated at the C-terminus, thus lacking the tyrosine kinase domain [5,6]. However, the TrkB-TK– and TrkB-Shc receptors differ in that each contain unique amino acid sequences at their C-terminus. The TrkB-Shc isoform includes the Shc binding domain that is absent in TrkB-TK– [6].

Both truncated TrkB receptors show differential tissue and celltype expression. TrkB-TK– is expressed in multiple tissues including brain, heart, lung, skeletal muscle, kidney, and pancreas [6]. In the brain, TrkB-TK– is expressed by both neurons and glia [7–9]. In contrast, TrkB-Shc is expressed in the spinal cord and multiple brain regions including the cerebellum, cortex, pons, hind brain, and diencephalon [6]. Interestingly, TrkB-Shc mRNA is detected in neurons but not in astrocytes [6].

Abbreviations: BDNF, brain-derived neurotrophic factor; CHOK1, Chinese hamster ovary K1; CHX, cycloheximide; TrkB, tropomyosin receptor kinase B; TrkB-TK+, full-length TrkB.

<sup>\*</sup> Corresponding author. Address: Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia. Fax: +61 2 4221 8130.

E-mail address: jwong@uow.edu.au (J. Wong).

In comparison to TrkB-TK–, the function of TrkB-Shc is not fully elucidated. *In vitro*, TrkB-TK– has been demonstrated to inhibit neurotrophin signaling either by sequestering or trapping neurotrophins (when expressed in glia) and thereby preventing binding and signal transduction via TrkB-TK+ homodimers [10,11] and/or act as a dominant-negative receptor by forming inactive heterodimers with TrkB-TK+ and hence, preventing neurotrophin signaling [12,13]. To date, similar co-transfection studies *in vitro* using TrkB-TK+ and TrkB-Shc have demonstrated that TrkB-Shc cannot be tyrosine phosphorylated [6] also suggesting a dominant negative function. However, Haapasalo et al. [14] demonstrated that co-expression of TrkB-Shc leads to increased cell surface expression levels of the TrkB-TK+ receptor in N2a neuronal cells and primary hippocampal neurons but did not investigate the phosphorylation state of TrkB.

In this study, we further characterize the biological function of the TrkB-Shc receptor in response to brief BDNF exposure. We report that TrkB-Shc protein levels are regulated by exogenous BDNF and that binding results in the regulation of phosphorylated TrkB-TK+ protein levels.

# 2. Materials and methods

# 2.1. Materials

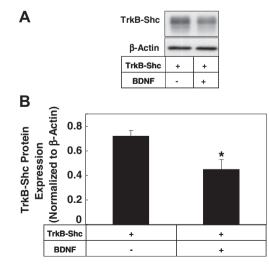
Chemicals and reagents used are listed below with the supplier. From Life Technologies: Dulbecco's modified Eagle's medium/ Ham's F-12 medium (DF12 1:1 mixture); fetal bovine serum; glutamax, Lipofectamine 2000; myc antibody. From Sigma: bovine-serum albumin fraction V; BDNF (Sigma; recombinant protein Cat # B3795); cycloheximide; protease inhibitor cocktail;  $\beta$ -actin antibody. Other reagents were bicinchoninic acid assay and phosphatase inhibitor cocktail (Pierce); phospho-TrkB antibody (Epitomics); mouse and rabbit peroxidase-conjugated affinity purified secondary antibodies (Dako); Immobilon-P enhanced chemiluminescence reagent (Millipore).

# 2.2. Cell culture, transfections and treatments

Chinese Hamster Ovary K1 (CHOK1) cells were obtained from the American Type Culture Collection and grown at 37 °C in a 5% CO<sub>2</sub> atmosphere. CHOK1 cells were cultured in Dulbecco's modified Eagle's medium/Ham's F-12 medium (DF12 1:1 mixture) containing 10% (v/v) FBS supplemented with 2 mM glutamax (Life Technologies).

# 2.3. Western blotting

CHOK1 cells were plated at a density of  $5 \times 10^5$  in 12 well plates and transfected with overexpression plasmids as indicated in the figures and figure legends [pcDNA3.1 (empty vector), pcDNA3.1-TrkB-Shc-myc and/or pcDNA3.1-TrkB-TK+ (500 ng/well)] for 24 h using Lipofectamine 2000 (2  $\mu l/well)$ . Cells were treated with 15 ng of BDNF (Abcam; recombinant protein Cat # AB9794) post-transfection in 0.1% BSA-DF12 medium for 15 min and then harvested or switched to 0.1% BSA-DF12 containing 100 µg/ml cycloheximde (without BDNF) and incubated for an additional 3 h before harvest. Cells were harvested for total protein using RIPA buffer supplemented with protease inhibitors (2 mM AEBSF, 0.015 mM aprotinin, 0.038 mM leupeptin, 0.030 mM pepstatin A, 0.028 mM E-64, 0.08 mM bestatin) (Sigma) and phosphatase inhibitors (Pierce). Protein concentrations were determined by the bicinchoninic acid method. Fifteen or twenty micrograms of each sample were mixed with  $5 \times$  SDS loading buffer (containing  $\beta$ mercaptoethanol), boiled at 95 °C for 5 min, and separated on 10% SDS–PAGE gels. Proteins were transferred onto nitrocellulose membranes and blocked using 5% (w/v) non-fat milk, 0.1% (v/v) Tween-20 in TBS (TBST) at room temperature for 1 h. Membranes were incubated with primary antibodies overnight at 4 °C: phospho-TrkB (1:5000) (Epitomics); myc (1:5000) (Invitrogen) and  $\beta$ -actin (1:10,000) (Sigma). Membranes were washed 3 × 10 min with TBST and incubated with mouse or rabbit peroxidase-conjugated affinity purified secondary antibody for 1 h (Dako). After further washing, bound antibodies were detected with Immobilon-P enhanced chemiluminescence reagent (Millipore) and visualized by autoradiography. Immunoreactive species were quantitated by densitometry using Image J (version 1.37v) (National Institutes of Health USA). The brightness/contrast of images have been adjusted using Adobe Photoshop CS (version 8).


### 2.4. Data presentation and statistics

All results shown are representative of 2–4 separate experiments as detailed in the figure legends. Data are presented as mean + standard error of the mean (SEM). Where appropriate, statistical differences were determined by student *t*-tests using STATISTICA 7 (StatSoft Inc., 2000, STATISTICA for Windows). A *p*-value  $\leq 0.05$  (two-tailed) was considered statistically significant.

# 3. Results

#### 3.1. TrkB-Shc protein expression is regulated by BDNF

Previously, cell surface expression of TrkB-TK+ was shown to be reduced by concentrations of BDNF that could stimulate TrkB-TK+ phosphorylation [14]. Since TrkB-Shc is also capable of binding BDNF, we determined whether its protein expression could be modulated by BDNF exposure. Using CHOK1 cells transiently transfected with myc-tagged TrkB-Shc, we found that expression of TrkB-Shc protein levels was significantly reduced when cells were briefly incubated with 15 ng of BDNF (t = -2.95, df = 4, p = 0.04) (Fig. 1A, B). Treatment of cells with BDNF did not affect  $\beta$ -actin protein levels (Fig. 1A).



**Fig. 1.** Effect of BDNF on TrkB-Shc protein levels. CHOK1 cells were transfected with TrkB-Shc-myc for 24 h and treated with 15 ng BDNF for 15 min before harvest. Proteins were separated by SDS-PAGE and immunoprobed. (A) Representative western blot image. (B) Bands were quantitated by densitometry and presented as protein expression normalized to  $\beta$ -actin + SEM. \*p = 0.04. Representative of n = 4 independent experiments.

Download English Version:

https://daneshyari.com/en/article/10761843

Download Persian Version:

https://daneshyari.com/article/10761843

Daneshyari.com