ELSEVIER

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

B Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Differential epigenetic regulation of *BDNF* and *NT-3* genes by trichostatin A and 5-aza-2'-deoxycytidine in Neuro-2a cells

Naoki Ishimaru ^{a,b}, Mamoru Fukuchi ^b, Akina Hirai ^a, Yusuke Chiba ^b, Tomonari Tamura ^a, Nami Takahashi ^a, Akiko Tabuchi ^b, Masaaki Tsuda ^b, Masahiko Shiraishi ^{a,*}

ARTICLE INFO

Article history: Received 16 February 2010 Available online 25 February 2010

Keywords: DNA methylation Histone acetylation BDNF NT-3

ABSTRACT

To understand epigenetic regulation of neurotrophins in Neuro-2a mouse neuroblastoma cells, we investigated the alteration of CpG methylation of brain-derived neurotrophic factor (BDNF) promoter I and neurotrophin-3 (NT-3) promoter IB and that of histone modification in Neuro-2a cells. Bisulfite genomic sequencing showed that the CpG sites of BDNF promoter I were methylated in non-treated Neuro-2a cells and demethylated following 5-aza-2'-deoxycytidine (5-aza-dC) treatment. In contrast, methylation status of the NT-3 promoter IB did not change by 5-aza-dC treatment in Neuro-2a cells. Furthermore, we demonstrated that BDNF exon I-IX mRNA was induced by trichostatin A (TSA) treatment. However, NT-3 exon IB-II mRNA was not induced by TSA treatment. Chromatin immunoprecipitation assays showed that the levels of acetylated histones H3 and H4 on BDNF promoter I were increased by TSA. These results demonstrate that DNA methylation and/or histone modification regulate BDNF gene expression, but do not regulate NT-3 gene expression in Neuro-2a cells.

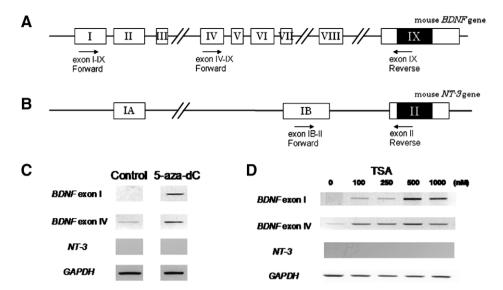
© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family that includes nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) [1,2]. BDNF plays an important role in neuronal survival and differentiation, extension of neuritis, and synaptic plasticity in the central nervous systems [3,4]. Aberration of the *BDNF* gene expression results in various neurological disorders, such as depression, Alzheimer's, Parkinson's and Huntington diseases [5–8].

The BDNF gene has eight 5'-untranslated exons and one coding exon, exon IX (Fig. 1A) [9,10]. By alternative splicing, each untranslated exon is spliced to exon IX. BDNF gene expression is regulated by multiple activity-dependent and tissue-specific promoters located upstream of each 5'-untranslated exon [11,12]. The NT-3 gene consists of at least two untranslated exons, exons IA and IB, and one protein coding exon, exon II (Fig. 1B) [13,14]. Promoters are located upstream of exons IA and IB, and NT-3 alternative transcripts are generated in various tissues. For example, we previously reported that NT-3 exon IB–II transcript was predominantly expressed in neurons [15]. Therefore, elucidation of tissue type-specific BDNF and NT-3 genes expressions would contribute to the

understanding of the regulation mechanisms controlling gene expression in neurons.


Previous studies have demonstrated that the *BDNF* gene expression is regulated by several transcriptional factors, such as cAMP-response element binding protein (CREB) and upstream stimulatory factors 1/2 (USF1/2), which are associated with *BDNF* promoters I and IV [16–18]. Additionally, calcium-responsive transcription factor (CaRF) plays an important role in *BDNF* transcriptional activation by binding to *BDNF* promoter IV [19]. However, it is still unclear how the transcription activities of *BDNF* promoters I and IV are differentially controlled. On the other hand, we previously demonstrated that two GC-boxes of the *NT-3* promoter IB recruited transcription factors, Sp3 and Sp4, in neurons [15]. This result suggests that different transcription regulation mechanisms control transcription of *BDNF* and *NT-3* genes.

It is reported that epigenetic regulations, such as DNA methylation and histone modification, play a crucial role in tissue type-specific and activity-dependent regulation of *BDNF* gene expression [10,20,21]. Moreover, it is reported that expression of *BDNF* exon I–IX mRNA, an alternatively spliced form containing exon I, is induced by 5-aza-2'-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, in Neuro-2a neuroblastoma cells [10]. Another study shows that Sp3 function as activator when Sp3 is bound to nonmethylated CpG sites of the mouse delta-opioid receptor (*mDOR*) promoter, whereas Sp3 repress *mDOR* promoter

^a Faculty of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Ootawara, Tochigi 324-8501, Japan

^b Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan

^{*} Corresponding author. Fax: +81 287 24 3512. E-mail address: mshirais@iuhw.ac.jp (M. Shiraishi).

Fig. 1. Expression levels of *BDNF* and *NT-3* genes after 5-aza-dC and TSA treatment. (A) Mouse *BDNF* gene structure as described by Aid et al. [10]. Each of the eight untranslated exons is spliced to give a common 3′-protein coding exon, exon IX. (B) Mouse *NT-3* gene structure as described by Kendall et al. [14]. Exons are shown as boxes and introns are shown as lines. Open boxes represent untranslated exons. The filled box indicates the protein coding region. (C) Neuro-2a cells were treated with 3 μM 5-aza-dC or PBS (control) for 2 days. *BDNF* exon I and *BDNF* exon IV indicate transcripts containing exons I and IV, respectively. (D) Neuro-2a cells were treated with TSA (100, 250, 500 or 1000 nM) or DMSO (control) for 24 h. The expression levels were measured by RT-PCR.

activity as repressor when Sp3 is bound to methylated CpG sites of *mDOR* promoter [22]. Because Sp3 binds to *NT-3* promoter IB containing the CpG sites, the *NT-3* promoter IB activity may be controlled by DNA methylation. Therefore, in this study, we analyzed the DNA methylation status of *BDNF* promoters I, IV and *NT-3* promoter IB in Neuro-2a to clarify epigenetic regulation of *BDNF* and *NT-3* genes.

2. Materials and methods

2.1. Cell culture and drug treatment

Mouse neuroblastoma Neuro-2a cells (American Type Culture Collection) were maintained in Dulbecco's Modified Eagle's Medium (DMEM, Invitrogen) supplemented with 10% fetal bovine serum (FBS, Invitrogen), 50 U/ml penicillin, and 50 µg/ml streptomycin (Invitrogen) at 37 °C in a humidified 5% CO $_2$ incubator. Cells were treated with trichostatin A (TSA, Merck) (0, 100, 250, 500 and 1000 nM) for 24 h or 3 µM 5-aza-dC (Sigma) for 2 days; 5-aza-dC was replaced with fresh 5-aza-dC at each 24 h.

2.2. RT-PCR

Total cellular RNA was isolated using ISOGEN (Nippongene). The isolated RNA was treated with RNase-free DNase (Invitrogen) to degrade contaminated genomic DNA. One microgram of total cellular RNA was reverse transcribed with oligo(dT) primers (Invitrogen) and M-MLV reverse transcriptase (Invitrogen) in a 20 µl of total reaction volume following the manufacture's instructions. Subsequently, PCR was performed using HotStarTaq Plus Master Mix Kit (QIAGEN) containing 1 µl of cDNA in a 20 µl of the total volume. Thirty-five amplification cycles (45 s at 95 °C; 45 s at 60 °C; 1 min at 72 °C) were conducted for BDNF exons I-IX and IV-IX and NT-3 exon IB-II, and 25 identical cycles for the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. PCR primer sequences were: BDNF exons I-IX: 5'-GTGTGACCTGAG CAGTGGGCAAAGGA-3' and 5'-GAAGTGTACAAGTCCGCGTCCTTA-3', BDNF exons IV-IX: 5'-CTC TGCCTAGATCAAATGGAGCTTC-3' and 5'-GAAGTGTACAAGTCCGCGT CCTTA, NT-3 exon IB-II: 5'-GCCCGGC GCAACTTTCTTCCC-3' and 5'-G

GGGCGAATTGTAGCGTCTCT-3', GAPDH: 5'-GCCCAGAACATCATCCC TGC-3' and 5'-GCCTCTCTT GCTCAGTGTCC-3'.

2.3. Bisulfite genomic sequencing

Genomic DNA was isolated using Wizard® Genomic DNA Purification System (Promega). Bisulfite modification of genomic DNA was performed following a published procedure [23]. One microgram of bisulfite-treated genomic DNA was then subjected to PCR experiments. PCR amplification composed of 30 cycles (30 s at 95 °C: 1 min at 54 °C: 1 min at 72 °C) after the initial Tag activation step (10 min at 95 °C). PCR primers used for initial amplification were: 5'-GTTGGAGATTTTTAGTTATGGTGG-3' and 5'-TTACCCACTAC TCAAATCACACC-3' for mouse BDNF promoter I, 5'-GTGAATTTGTTAG GATTGGAAGTGAAAATA-3' and 5'-CTCTTACTATATATTTCCCCTTCTC TTC-3' for mouse BDNF promoter IV, 5'-GGGA AGGTTAAAAGAGGG-GATAATG-3' and 5'-ggcatctagaAAAACCTTCAACTCTAAATCCC-3' for mouse NT-3 promoter IB (Lower cases of primer sequence indicate adaptor sequences for restriction enzymes.). Nested PCR (for mouse BDNF promoters I, IV) and semi-nested PCR (for mouse NT-3 promoter IB) were performed using 2 µl of the initial reaction mixture with conditions similar to those described above. PCR primers used in the nested and semi-nested PCR were 5'-cactaagcttTTATGGTGGG GGAGGGGTA-3' and 5'-ggcatctagaCTACTCAAATCACACCTAAAACTC TAA-3' for mouse BDNF promoter I, 5'-cactaagcttGGATTGGAAGTGA AAATATTTATAAAGTATG-3' and 5'-ggcatctagaCTAAACAAAAAC-TAAAAAATTTCATACTAACTC-3' for mouse BDNF promoter IV, 5'-cactaagcttTTTTT TTTGAAGTGGATTAGGAG-3' and 5'-ggcatctagaAAAAC CTTCAACTCTAAATCCC-3' for mouse NT-3 promoter IB. PCR products were digested with HindIII/XbaI and the fragments were cloned into HindIII/XbaI sites of the plasmid vector pUC19. Thirteen independent plasmid clones were selected and their nucleotide sequences were determined.

2.4. The Chromatin immunoprecipitation assays

The Chromatin immunoprecipitation (ChIP) assays were performed by using ChIP-IT™ express kit (ACTIVE MOTIF). Briefly, Neuro-2a cells were treated with 500 nM TSA or DMSO (Control)

Download English Version:

https://daneshyari.com/en/article/10765044

Download Persian Version:

https://daneshyari.com/article/10765044

<u>Daneshyari.com</u>