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Abstract

Selective knockdown of gene expression by short interference RNAs (siRNAs) has allowed rapid validation of gene functions and
made possible a high throughput, genome scale approach to interrogate gene function. However, randomly designed siRNAs display
different knockdown efficiencies of target genes. Hence, various prediction algorithms based on siRNA functionality have recently been
constructed to increase the likelihood of selecting effective siRNAs, thereby reducing the experimental cost. Toward this end, we have
trained three Back-propagation and Bayesian neural network models, previously not used in this context, to predict the knockdown effi-
ciencies of 180 experimentally verified siRNAs on their corresponding target genes. Using our input coding based primarily on RNA
structure thermodynamic parameters and cross-validation method, we showed that our neural network models outperformed most other
methods and are comparable to the best predicting algorithm thus far published. Furthermore, our neural network models correctly clas-
sified 74% of all siRNAs into different efficiency categories; with a correlation coefficient of 0.43 and receiver operating characteristic
curve score of 0.78, thus highlighting the potential utility of this method to complement other existing siRNA classification and predic-
tion schemes.
� 2005 Elsevier Inc. All rights reserved.
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RNAi (RNA interference) represents an extremely pow-
erful approach to silence gene expression using synthetic,
plasmid or viral-encoded small interfering RNAs (siRNAs)
[1]. Guided by RNA induced silencing complex (RISC),
siRNA binds to its complementary target mRNA and
induces its degradation [2]. Since its discovery [3], RNAi
technology has been widely used to study and validate gene
function through selective knockdown of their target
mRNAs. Thus, gene function can be inferred by comparing
the phenotypes or functional differences before and after
the introduction of siRNA specific for a given gene of inter-
est. The simplicity and ease with which this technology can
be applied has made it a powerful tool to interrogate mam-

malian genome in a high throughput manner to uncover
novel pathways involved in diseases [4].

siRNA typically consists of a short RNA sequence with
19 nucleotides and a 3 0 2-nt T overhang. Potential siRNAs
are selected from each target mRNA by sliding a 19 nucle-
otide-long window along its entire length. Based on certain
siRNA functional features, several siRNAs will then be
chosen, synthesized, and empirically tested for their ability
to knockdown target gene expression. Not surprisingly, the
efficacy of each siRNA spans the range of no effect to near
complete knockdown of target gene expression. Thus, any
method that increases the chances of selecting an effective
siRNA will greatly reduce the experimental cost and vali-
dation time involved. Toward this end, several groups have
recently developed some general rules, based on experimen-
tal data, to select good candidate siRNA. In a systematic
analysis of 180 siRNAs targeting the mRNA of two genes,
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Reynolds et al. [5] discovered eight functional features
associated with an effective siRNA. These include low
GC content, a bias towards low internal stability at the
3 0-terminal on the sense strand, and other base preferences.
In a separate study, Amarzguioui et al. [6] analyzed the
ability of 46 siRNAs to knockdown the expression of four
genes and found six features that correlated well with siR-
NA functionality. Both groups agreed that the asymmetry
in the stability of the duplex end correlated well with siR-
NA functionality, but disagreed on the contribution of spe-
cific sequence motif. Other studies also employed similar
approaches to select the best candidate siRNA for a given
gene [7–9]. In general, one point is assigned to each func-
tional feature, and each siRNA is then scored according
to how many functional features it possesses. Any siRNA
with a score above a user-defined threshold will then be
selected. This scoring procedure makes two important
assumptions: each feature of the siRNA is independent of
each other, and all the features are equally important in
its overall ability to silence gene expression.

Attempts were also recently made to apply various ma-
chine learning algorithms to help select effective siRNA can-
didates with high knockdown efficiencies of target genes
from a much larger test set of siRNA database. Saetrom
[10] implemented a boosted genetic programming algorithm
on an assembled database of 204 siRNAs. Based on their
best model using sequence pattern encoding method, they
observed an overall correlation coefficient of 0.46 between
the predicted and observed siRNAs knockdown values of
target gene expression, with an receiver operating character-
istic (ROC) score of 0.72. Of the published reports, this pre-
diction method has the highest correlation value. Using only
highly correlated features of siRNA functionality based on
287 siRNAs from 30 genes, Chalk et al. [11] could achieved
more than a twofold improvement in prediction over ran-
dom selection of siRNAon a trained regression tree with full
cross-validation. Recently, support vector machines based
on simplified generalized string kernel and other kernel
methods also have been used in this context [12,13].

Neural network models are a form of machine learning
technique that can effectively handle noise and complex
relationship in a more robust way. Among the more exten-
sively studied neural network models include the back-
propagation neural network (BPNN), general regression
neural network (GRNN), and probabilistic neural network
(PNN). The prediction capabilities of these neural network
models have been proved successfully in other contexts
[14–17]. Here, we demonstrated the utility of using three
different neural network models, comparable to the best
published method, to predict and classify siRNA into dif-
ferent knockdown efficiency categories.

Materials and methods

Neural network models. Artificial neural network is built on a set of
interconnected neural units and consists of one input and one output layer
that takes the input values and outputs the final output result individually.

Some of them have one or more hidden layers which perform nonlinear
modeling (Fig. 1).

There are many different types of neural networks. Each differs from
the others in network topology and/or learning algorithm. In this study,
we introduce the back-propagation, general regression, and probabilistic
neural networks in the context of predicting siRNA knockdown efficiency.

Back-propagation neural network. Back-propagation neural network is
a multilayer feed-forward network with hidden layers between the input
and output layer. Each unit in hidden layer calculates a weighted net
output of the input units.

netj ¼
Xn

i¼1

xiwij þ w0 ¼
Xn

i¼0

xiW ij; ð1Þ

where netj is the value of jth unit in hidden layer and xi is the value of ith
unit in input layer.Wij is the weight of connection between these two units.
W0 is the bias. Through certain activation functions, the output unit pro-
duces class labels.

f ðnetÞ ¼ SgnðnetÞ ¼
1 if net P 0;

�1 if net < 0;

�
ð2Þ

where Sgn is signal function and here we assume 0 is the threshold we
used. Used in supervised learning task, the network assigns random
weights to all interconnections between units initially and computes the er-
ror term between desired target value and prediction. It then propagates
the error backward through the network. Thus by approximating the de-
sired target value, the network iteratively adjusts these weights to find the
best combination of weights to minimize the prediction error.

Specific learning algorithms have been previously developed for back-
propagation neural network. The learning procedure iteratively presents
all patterns to the classifier and adjusts those weights until the error term is
below or equal to the user-defined threshold. By adjusting free parameters
such as learning time, the number of hidden units, learning rate, and
momentum, the algorithm searches the error space and tries to find the
local minimum, which yields the best classification result.

General regression neural network. General regression neural network
(GRNN) [18] is another form of feed-forward network. It differs from
back-propagation neural network in several ways. First, all GRNNs have
four layers: input, hidden, summation, and output layers. The number of
units in hidden layer and summation layer depend on the number of
patterns and input vector. Second, GRNNs use radial basis function in-
stead of sigmoid activation function to describe the target probabilistic
value. It estimates the joint probability density function using Parzen’s
nonparametric window. Third, GRNNs use a one-pass learning process.
Therefore, it is faster compared to back-propagation algorithm. Expec-
tation of the target value given an input is described by Eq. (3):

Fig. 1. Back-propagation neural network model with full connections
between different layer units. The graph shows there is one hidden layer in
between the input and output layer.
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