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Metabolite transport between organelles, cells and source and sink tissues not only enables pathway co-
ordination but it also facilitates whole plant communication, particularly in the transmission of information
concerning resource availability. Carbon assimilation is co-ordinated with nitrogen assimilation to ensure that
the building blocks of biomass production, amino acids and carbon skeletons, are available at the required
amounts and stoichiometry, with associated transport processes making certain that these essential resources
are transported from their sites of synthesis to those of utilisation. Of the many possible posttranslational mech-
anisms that might participate in efficient co-ordination of metabolism and transport only reversible thiol-
disulphide exchange mechanisms have been described in detail. Sucrose and trehalose metabolism are
intertwined in the signalling hub that ensures appropriate resource allocation to drive growth and development
under optimal and stress conditions, with trehalose-6-phosphate acting as an important signal for sucrose avail-
ability. The formidable suite of plant metabolite transporters provides enormous flexibility and adaptability in
inter-pathway coordination and source-sink interactions. Focussing on the carbon metabolism network, we
highlight the functions of different transporter families, and the important of thioredoxins in the metabolic dia-
logue between source and sink tissues. In addition, we address how these systems can be tailored for crop
improvement.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Plantmetabolism is driven by the energy-transducing reactions of the
chloroplasts and mitochondria, which use ATP, reducing power
{NAD(P)H)} and associated metabolites as the major currency of energy
exchange. Plant cells synthesize all of the metabolic building blocks for
growth, biomass production and defence such as sugars and carbohy-
drate polymers, lipids, amino acids and secondarymetabolites such as al-
kaloids and terpenoids. Metabolite fluxes through parallel pathways
often occur simultaneously in differing cellular compartments [1]. More-
over, themetabolic requirements of different developmental and defence
processes change dynamically with time and according to prevailing en-
vironmental conditions, requiring overlapping layers of short and long-
term regulation. Dynamic regulation of photosynthetic and respiratory
metabolism involving extensive metabolite exchange provides tight but
flexible delivery of the correct building blocks in appropriate amounts
at the right time and place. While our understanding of the co-
ordination of the pathways of primary carbon and nitrogen assimilation
has greatly increased in recent decades, relatively little is known about
regulation of the essential transport systems between compartments,

cells and different plant organs [2–4]. Metabolites such as sugars and
amino acids occupy central positions in the coordination of processes in
different cellular compartments, facilitating multiple points of reciprocal
control betweenpathways [5–7]. In addition,metabolites, such as sucrose
and nitrate act as signals regulating gene expression to optimise pathway
fluxes according to prevailing environmental conditions. In this review
we discuss the importance of transporters in the metabolic coordination
network within cells, between cells and between organs, with a particu-
lar focus on carbon metabolism and sugar transport and signalling, and
the main pathways that interact with carbon metabolism to ensure ap-
propriate provision of resources between source and sink organs.

2. Carbon/nitrogen interactions

The efficient operation of carbon metabolism leading to carbon gain
intrinsically depends on the successful uptake of other nutrients partic-
ularly nitrogen and phosphorus. Increasing focus is being placed on this
interdependence because of the uncertainties that persist regarding
how plant yields will be influenced by climate change and the increas-
ing availability of carbon dioxide in the atmosphere. On one hand, stud-
ies in FACE (Free-Air CO2 Enrichment) systems have demonstrated that
nitrogen use efficiency will increase as atmospheric carbon dioxide be-
comes more available [8]. Conversely, the concomitant inhibition of
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photorespirationwill have an adverse effect on primary nitrogen assim-
ilation because of limitations on redox cycling [9]. In addition, for future
agriculture to be sustainable it is crucial that further yield gains are
achieved with current and preferably low levels of soil fertilization
[10]. Nitrogen use efficiency (NUE) is a highly complex trait involving
N uptake efficiency (NUpE) and N assimilation efficiency (NUtE).
NUpE is influenced by root architecture and the activities of large fami-
lies of NO3

− and NH4
+ transporters [10]. Several families of nitrate trans-

porters (NRT1, NRT2 and CLC) mediate the uptake and transport of
nitrate in plants [10]. In general, NRT2 transporters have a high affinity
for nitrate, while most of the NRT1 family have a low affinity for nitrate.
Perhaps the best characterised example is NRT1.1, which is a dual affin-
ity transporter. It is switched from low- to high-affinity transport forms
by phosphorylation of Thr101 [10]. The post-translational modification
of NRT1.1 enhances the affinity of the protein for nitrate, while high ni-
trate also acts as a transcriptional suppressor of NRT1.1expression.
NRT1.1 is an important nitrate-sensing component that regulates lateral
root development [11] by facilitating auxin transport [12]. This trans-
porter also participates in the control of the expression of genes such
as the high-affinity nitrate transporter, NRT2.1, whose expression is
also regulated by nitrate availability [13–15].

Nitrate reduction in the cytosol is catalysed by NADH-dependent ni-
trate reductases (NR).While the activity of this enzyme is regulated in re-
sponse to environmental and metabolic triggers as well as protein
phosphorylation, the rate of nitrate assimilation can be limited by the
availability of NADH [2,3,16,17]. Metabolite transport between the chlo-
roplasts and cytosol is important in boosting the cytosolic NADHpool, in-
volving dicarboxylates transport and shuttle systems for malate and
oxaloacetate. The 2-oxoglutarate/malate transporter, AtpOMT1 plays an
important role in this process, functioning both as an oxaloacetate/malate
transporter in the malate valve pathway and as a 2-oxoglutarate/malate
transporter mediating the transfer of carbon skeletons [18,19].

Nitrite generated by the action of NR is transported into the chloro-
plasts where it is reduced by nitrite reductase (NiR) to ammonium
(NH4

+), which is assimilated into amino acids by the glutamine
synthetase/glutamine-2-oxoglutarate aminotransferase (GS-GOGAT)
pathway. Thereafter, a raft of aminotransferases and other enzymes ca-
talyse transfer of the amino group to form other amino acids. Provision
of the 2-oxoglutarate required for ammonia assimilation requires par-
tial operation of the TCA cycle in the mitochondria [3].

3. Pathway co-ordination of by reversible thiol-disulphide exchange

The extensive cycling of reducing equivalents facilitated bymetabo-
lite transport [9,20,21] also facilitates pathway co-ordinates through in-
fluences on post-transcriptional protein modifications (PTM) that
provide dynamic and reversible protein processing tomodulate enzyme
activity, binding properties and function.Many types of PTM (over 450)
have been identified to date. Many proteins involved in carbon and ni-
trogen metabolism are subject to PTMs such as protein acetylation,
succinylation, malonylation, butyrylation, and propionylation. For ex-
ample, the large subunit of ribulose-1, 5-bisphosphate carboxylase
(RuBisCO) is extensively succinylated and acetylated. Deacetylation of
the RuBisCO protein has been shown to activate the enzyme [22]. How-
ever, in most cases the functional significance of these PTMs has yet to
be resolved. In contrast, the functions of protein phosphorylation and
thiol-disulphide exchange processing (Fig. 1) have been extensively
characterised. For example, the light and thiol-dependent activation of
photosynthetic CO2 fixation pathway enzymes requires thioredoxins
(TRX), which are small proteins with disulphide reductase activities
[23]. TRX reductases in the stroma reduce TRXs using either reduced
ferredoxin or NADPH produced by the photosynthetic electron trans-
port chain [24]. Conversely, TCA cycle enzymes such as succinate dehy-
drogenase and fumarase are reductively inactivated by TRX [25–27]. In
this way, the TRX systems in the plastids, mitochondria and cytosol link

photosynthetic and respiratory electron transport activities to function-
al changes in enzyme activities [23,28].

The photosynthetic electron transport chain provides the reductive
“push” that keeps the stromal TRXs reduced in the light, ensuring that
the activation states of the thiolmodulated enzymes involved in CO2fix-
ation are matched to rate of production of reduced ferredoxin and
NADPH [24,29–31].When this push is removed in the dark, the TRXs re-
vert to their oxidized forms, which in turn allow oxidative inactivation
of the thiol-modulated enzymes. In addition, chloroplast TRXs also reg-
ulate malate and oxaloacetate transport [32] and starch metabolism
through effects on adenosine diphosphate (ADP)-glucose pyrophos-
phorylase (AGPase). The small subunit of this key enzyme of starch bio-
synthesis is regulated by redox-dependent dimerization in response to
sugar availability [33–35].

Appropriate resource allocation between different plant organs
might also be achieved by post-translational modification of sucrose
transporters. Sucrose export from leaves occurs both in the light and
dark to ensure the continuous and stable provision of adequate carbon
resources to drive plant growth and development. The transport of su-
crose is mediated by membrane-localised sucrose transporters, whose
properties will be discussed later in detail. The activities of these trans-
porters are regulated by changes in cellular redox status and by protein-
protein interactions [36]. For example, SUT1 interacts with a small
cysteine-rich cell wall protein in potato called SN1 [37]. The SN1 protein
belongs to the Snakin/gibberellic acid stimulated (GAS) family in
Arabidopsis [38,39]. Silencing of SN1 leads to perturbations in cellular
redox metabolism, particularly antioxidant activities [39]. SUT1 is able
to form dimers with a protein disulphide isomerase in a redox-
dependent interaction and is hence able to interact with other proteins
that are involved in metabolism or secretion [40]. However, no in-
creases in the transport activity of StSUT1 have been shown to be de-
pendent on this dimerization [41].

4. Transport of sugars between the chloroplasts and cytosol

Triose phosphate/phosphate, glucose, maltose transporters are
important mediators of carbon transfer between the plastids and cy-
tosol [7]. Carbon assimilated during photosynthesis is either
transported out of the chloroplast or used for starch biosynthesis in
the stroma. Carbon is exported from the chloroplasts in the light as
triose phosphate or 3-phosphoglyceric acid. This occurs across the
triose-phosphate/phosphate translocator (TPT) in strict stoichio-
metric exchange for inorganic phosphate (Pi). TPT belongs to the
plastidial phosphate translocator family, which has three other
members: the pentose phosphate/phosphate translocator (XPT),
phosphoenolpyruvate (PEP)/phosphate translocator (PPT) and the
glucose 6-phosphate/phosphate translocator (GPT).

TPT is relatively abundant in the chloroplast inner membrane, con-
stituting 10–12% of the protein content [42]. Triose-phosphates
transported by TPT are utilised for sucrose synthesis in the cytosol or
for the generation of organic acids through the anaplerotic pathway. In-
organic phosphate produced during sucrose synthesis is transported
back into the chloroplast via the TPT to be used in ATP synthesis
[43–45]. Therefore, the re-cycling of phosphate maintains photosyn-
thetic electron transport and the pentose phosphate pathways [46].
While transgenic potato plants that have reduced TPT levels or where
TPT is knocked out completely show no phenotype, the chloroplasts
have a reduced capacity to import phosphate by up to 30%, together
with a 40–60% reduction in maximal photosynthesis [47]. The TPT is
therefore central to the regulation of carbon partitioning between
starch and sucrose [48,49]. Transgenic tobacco plants that over-
express TPT did not show a marked phenotype or any marked effects
on amino acid production [50]. However, they incorporated more CO2

into sucrose and had higher leaf starch/sucrose ratios than thewildtype
[50]. TransgenicArabidopsis lines over-expressing TPT and also fructose-
1, 6-bisphosphatase had higher photosynthetic carbon assimilation
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