Accepted Manuscript

On the structural possibility of pore-forming mitochondrial F_oF₁ ATP synthase

Christoph Gerle

PII: S0005-2728(16)30054-8

DOI: doi: 10.1016/j.bbabio.2016.03.008

Reference: BBABIO 47623

To appear in: BBA - Bioenergetics

Received date: 22 January 2016 Revised date: 23 February 2016 Accepted date: 1 March 2016

Please cite this article as: Christoph Gerle, On the structural possibility of pore-forming mitochondrial F_oF_1 ATP synthase, BBA - Bioenergetics (2016), doi: 10.1016/j.bbabio.2016.03.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUS

On the structural possibility of pore-forming mitochondrial F₀F₁ ATP synthase

Christoph Gerle^{1,2,*}

¹Picobiology Institute, Department of Life Science, Graduate School of Life Science,

University of Hyogo, Kamigori, Japan

²Core Research for Evolutional Science and Technology, Japan Science and

Technology Agency, Kawaguchi, Japan

Short title: ATP synthase as ptp

Key words: F-ATPase; mpt; rotor ring; mitochondria; apoptosis; aging

*Correspondence to: Christoph Gerle; gerle.christoph@gmail.com; tel.: +81-791-58-

0326; 3-2-1 Koto, Kamigori-cho, Hyogo 678-1297, Japan

Abstract

The mitochondrial permeability transition is an inner mitochondrial

membrane event involving the opening of the permeability transition pore

concomitant with a sudden efflux of matrix solutes and breakdown of membrane

potential. The mitochondrial F₀F₁ ATP synthase has been proposed as the molecular

identity of the permeability transition pore. The likeliness of potential pore-forming

sites in the mitochondrial F_oF₁ ATP synthase is discussed and a new model, the death

finger model, is described. In this model, movement of a p-side density that connects

the lipid-plug of the c-ring with the distal membrane bending Fo domain allows

reversible opening of the c-ring and structural cross-talk with OSCP and the catalytic

 $(\alpha\beta)_3$ hexamer. This article is part of a Special Issue entitled: 19th European

Bioenergetics Conference.

1

Download English Version:

https://daneshyari.com/en/article/10795283

Download Persian Version:

https://daneshyari.com/article/10795283

<u>Daneshyari.com</u>