
ARTICLE IN PRESS

Biochimica et Biophysica Acta xxx (2015) xxx-xxx

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

journal homepage: www.elsevier.com/locate/bbabio

Review Calcium-dependent regulation of photosynthesis $\stackrel{\scriptstyle \leftrightarrow}{\leftarrow}$

Ana Karina Hochmal¹, Stefan Schulze¹, Kerstin Trompelt, Michael Hippler^{*}

Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany

ARTICLE INFO

Article history: Received 11 November 2014 Received in revised form 5 February 2015 Accepted 7 February 2015 Available online xxxx

Keywords: Calcium Chloroplast Photosynthesis Linear cyclic electron flow Calcium transporter Metabolism

1. Introduction

Calcium is an essential plant nutrient. It is required for structural roles in the cell wall and membranes, as counter-cation for inorganic and organic anions in the vacuole and plays an essential role as intracellular messenger in the cytosol [1]. The concentration of cytoplasmic calcium [Ca²⁺]_{cvt} in plant cells increases in response to various developmental conditions and environmental factors. It is considered that alterations in $[Ca^{2+}]_{cvt}$ are crucial for the physiological response of the plant. More than 30 distinct developmental processes or environmental challenges initiate perturbation in the $[Ca^{2+}]_{cyt}$ (for review see [2]). Such perturbation signals include plant hormones, light, stress factors, and pathogenic or symbiotic elicitors [3-10]. In the green alga Chlamydomonas *reinhardtii*, fast phototactic movements require both light-induced H⁺ and Ca^{2+} signaling events that are associated with the evespot region of Chlamydomonas and mediate the regulation of flagellar bending and appropriate swimming direction [11,12], thereby providing photoprotection by avoiding excess exposure to light.

The calcium signaling network consists of distinct modules responsible for i) the generation of the Ca^{2+} signature, i.e. an elevation of the $[Ca^{2+}]$ which is stimulus-specific in regard to its amplitude, frequency, and shape, in response to a signal, ii) recognition of the signature by Ca^{2+} sensors and iii) transduction of the Ca^{2+} signature message to targets that mediate signal-specific responses [9,13–15]. Molecular and bio-informatic analyses of *Arabidopsis* genes and genome revealed the

* Corresponding author.

E-mail address: mhippler@uni-muenster.de (M. Hippler).

¹ These authors contributed equally to this work.

http://dx.doi.org/10.1016/j.bbabio.2015.02.010 0005-2728/© 2015 Elsevier B.V. All rights reserved.

ABSTRACT

The understanding of calcium as a second messenger in plants has been growing intensively over the last decades. Recently, attention has been drawn to the organelles, especially the chloroplast but focused on the stromal Ca^{2+} transients in response to environmental stresses. Herein we will expand this view and discuss the role of Ca^{2+} in photosynthesis. Moreover we address of how Ca^{2+} is delivered to chloroplast stroma and thylakoids. Thereby, new light is shed on the regulation of photosynthetic electron flow and light-dependent metabolism by the interplay of Ca^{2+} , thylakoid acidification and redox status. This article is part of a Special Issue entitled: Chloroplast biogenesis.

© 2015 Elsevier B.V. All rights reserved.

presence of about 80 polypeptides at the level of Ca²⁺ signature, about 400 sensors and about 200 target proteins, indicating an intricate Ca²⁺ signaling network [14]. Herein a central question is: how do plants decode and distinctively transmit perturbations in cytosolic Ca²⁺ signatures to downstream targets? Two principle types of Ca²⁺-decoding signaling components are known in plants. Type I components are "sensorresponder" proteins that possess both Ca²⁺-binding and enzymatic "effector" domains. Important examples are the Calcium-Dependent Protein Kinases (CDPKs) [16-18] and the Calcium-Calmodulin-Dependent Kinases (CCaMKs) [19]. Type II components are "sensor-relay" proteins, such as calmodulin (CaM), which have a Ca²⁺-binding domain but do not exhibit an enzymatic activity [20]. When Ca²⁺ is bound, these proteins are turned on to interact with respective target proteins and to alter their biological activity. Another example for type II components are Calcineurin B-like calcium sensor proteins (CBLs) from Arabidopsis [21], which specifically interact with a family of protein kinases designated as CBL-Interacting Protein Kinases (CIPKs) [22]. A prime example for such a type of regulation is the phosphorylation of the K⁺ channel AKT1 via CIPK23 and up-regulation of its activity under limiting K⁺-supply conditions [23,24].

Dark-induced increases of chloroplast stromal Ca²⁺ levels precede the generation of cytosolic Ca²⁺ transients in tobacco leaf cells [25], suggesting that the chloroplast represents an element of the cellular Ca²⁺ network and contributes to the cytosolic Ca²⁺ signaling [26–31]. Commonly, it has been described that Ca²⁺ uptake into the chloroplast occurs in the light while Ca²⁺ is released into the cytosol in the dark (as reviewed in [30]). Furthermore, there is emerging evidence that chloroplasts may contribute to cytosolic Ca²⁺ signaling via the chloroplast localized calcium sensor protein (CAS) [32–34]. While the exact mechanisms have not been resolved, cytosolic Ca²⁺ signals induced by

 $[\]stackrel{\scriptscriptstyle{\scriptsize\rm trian}}{\to}$ This article is part of a Special Issue entitled: Chloroplast biogenesis.

ARTICLE IN PRESS

external Ca²⁺ could not be generated in CAS knockout mutants [32,35]. Changes in chloroplast Ca²⁺ might influence enzymatic functions of Ca²⁺-binding proteins in the organelle and might regulate oxygenevolving capacity of PSII and properties of photosynthetic electron transfer and photo-protection mechanism. This raises the question how is Ca²⁺ taken up and released from chloroplasts?

2. Organellar Ca²⁺ dynamics, transporters and signaling

Chloroplasts are plant organelles that possess a high concentration of Ca^{2+} . The predominant portion of the chloroplastic Ca^{2+} (~15 mM [68]) is bound to the negatively charged thylakoid membranes or to calcium-binding proteins [69] keeping the resting free $[Ca^{2+}]_{stroma}$ as low as 150 nM to avoid the precipitation of phosphates (Fig. 1A).

Since more than 40 years it has been known, that a light-dependent uptake of Ca^{2+} occurs in isolated chloroplasts [36,37,70]. However, the molecular mechanisms behind this process are still poorly understood (for recent reviews see [31,34]). Based on the work of Kreimer et al. [37,70], the Ca^{2+} influx is mediated by a uniport-type carrier and linked to photosynthetic electron transport via the membrane potential.

Furthermore, in 1995 Johnson et al. [71] observed a Ca^{2+} flux in the chloroplast upon the change from light to darkness (Fig. 1B). This darkstimulated Ca^{2+} flux was shown to peak 20–30 min after the offset of light with a magnitude that was proportional to the previous duration of light exposure and it was not prevented by the inhibition of photosynthetic electron flow with DCMU [25]. They concluded that Ca^{2+} was taken up during illumination, sequestered in the thylakoid lumen or by Ca^{2+} storage proteins and released from these stores rather than imported from the cytosol after lights-off.

It should be noted, that specific Ca²⁺ signals can also be observed in the chloroplast in response to pathogen-associated molecular patterns (PAMPs) [34,72] as well as cold, high-salt and hyperosmotic stimuli [34].

2.1. Import of Ca^{2+} across the chloroplast envelope and thylakoid membrane

Despite the analysis of Ca²⁺ signals in the chloroplast and their importance, the identification of Ca²⁺ transporters in the chloroplast envelope and thylakoid membrane remains an unresolved challenge. For the import of Ca²⁺ through membrane potential-driven Ca²⁺ transporters [73] two potential chloroplast envelope membrane Ca²⁺-ATPases have been proposed (Fig. 1A). In the first place, the autoinhibited Ca²⁺-ATPase AtACA1 was identified by Huang et al. in the *Arabidopsis* chloroplast envelope but its higher abundance in roots, the lack of Ca^{2+} -ATPase activity at the envelope [39] as well as the proteomic assignment of AtACA1 to the ER and plasma membrane [74,75] question the role of AtACA1 in chloroplastidial Ca²⁺ import. Secondly, the heavy metal P-type ATPase AtHMA1 was identified in the chloroplast envelope by a proteomic approach by Ferro et al. [40] and its localization was confirmed by GFP fusion [41]. However, conflicting studies concerning its transport of Ca^{2+} [76] and/or heavy ions like Cu^{2+} and Zn²⁺ [41,77] exist.

The family of mechanosensitive channel of small conductance-like (MSL) proteins exhibits two members in the chloroplast envelope of *Arabidopsis thaliana*: MSL2 and MSL3 [44,45]. They have been shown to regulate the plastid size, shape [44] and division [78]. However, Ca²⁺-permeability can be only inferred from their bacterial homolog MscS [79].

Furthermore, the glutamate receptor AtGLR3.4 was localized to the chloroplast as well as the plasma membrane [42]. GLRs can form nonselective cation channels and have putative roles in Ca²⁺ signaling [43]. Interestingly, GLRs as well as cyclic nucleotide-gated channels (CNGCs) and two-pore channels (TPCs) were found in green algae, higher plants and animals. This is in contrast to the four-domain voltage-dependent Ca²⁺ channels (VDCCS), transient receptor potential channels (TRPs) and inositol (1,4,5)-trisphosphate receptors, which are absent from

land plants (reviewed in [80]) but present in green algae such as *C. reinhardtii* [81].

The import of Ca²⁺ across the thylakoid membrane has been shown to be dependent on a light- or ATP-induced transthylakoid proton gradient [82]. Overexpression and knockdown of the thylakoid protein Post-Floral-specific gene 1 (PPF1) led to an increased and decreased calcium storage capacity of *Arabidopsis* guard cells, respectively [46]. Furthermore, its expression in human hepatoma cells led to inward Ca²⁺ currents. Therefore, PPF1 represents a candidate for the transport of Ca²⁺ into the thylakoid lumen.

2.2. Import of nuclear encoded proteins into the chloroplast

 Ca^{2+} signals also regulate the import of proteins into the chloroplast via the TOC–TIC complex (translocon of the outer/inner envelope membrane of chloroplasts) (see review [51]). TIC20 and TIC110 have been proposed for the translocation of preproteins across the inner membrane [83,84] and recently the main components of the TIC20 complex have been identified: TIC56, TIC100, and TIC214 (YCF1) [85]. The import of proteins was shown to be affected by the CaM inhibitor Ophiobolin A as well as the calcium ionophores A23187 and Ionomycin [86]. Ca²⁺ influences the channel activity of TIC110 [83] and TIC32, an interaction partner of TIC110, was identified as a CaM-binding protein in vitro [87]. Interestingly, the interaction between TIC32 and TIC110 is inhibited in the presence of NADPH [87] providing a link between Ca²⁺ signaling and the redox status of the chloroplast.

2.3. Mitochondrial Ca²⁺ import

Mitochondria can sequester Ca^{2+} as well and mitochondrial Ca^{2+} signals not only regulate the rate of mitochondrial energy (ATP) production in animals [88] but are also a response to cold stress, hyperosmotic stress and mechanical stimuli in plants [89]. The search for mitochondrial Ca^{2+} import proteins took nearly 50 years and resulted in the identification of the Mitochondrial Calcium Uniporter (MCU) in 2011 [90,91], which is associated with several proteins (MICU1, MICU2, EMRE) in a uniporter complex [92–94]. MCU has a high-selectivity but low-affinity for Ca^{2+} [95] and interestingly, it is inhibited by ruthenium red, which was shown for the light-dependent Ca^{2+} influx in chloroplasts as well [37]. The identification of mitochondrial Ca^{2+} transporter in plants is missing so far. However, six potential MCU homologs have been identified in *A. thaliana*, one of which is predicted to be targeted not only to mitochondria but also to chloroplasts (At5g66650,) [30].

3. The impact of Ca²⁺ on chloroplast metabolism

The following section will introduce the importance of Ca^{2+} towards chloroplast metabolism and highlight on the reactions, which are closely linked to photosynthesis. These processes are illustrated in Fig. 1A and Table 1 summarizes the function of the involved proteins in regard to photosynthesis as well as their Ca^{2+} dependency. Besides the light-induced redox poise a low resting free $[Ca^{2+}]$ (~150 nM [71]) is needed for the activation of the photosynthetic carbon fixation. During light-to-dark transition, large Ca^{2+} fluxes into the stroma lead to the deactivation of carbon fixation (Fig. 1B) [25,82]. It is remarkable that the activation and deactivation of certain enzymes are regulated by the same signal molecule.

3.1. Light-independent reactions of photosynthesis

The light-independent reactions represent the known Calvin– Benson–Bassham (CBB) cycle which takes place in the stroma of chloroplasts and is the primary pathway of carbon fixation of C3 plants [119]. The CBB cycle proceeds in three main stages: carboxylation, reduction and regeneration. In the first stage, carbon dioxide is

Please cite this article as: A.K. Hochmal, et al., Calcium-dependent regulation of photosynthesis, Biochim. Biophys. Acta (2015), http://dx.doi.org/ 10.1016/j.bbabio.2015.02.010

Download English Version:

https://daneshyari.com/en/article/10795389

Download Persian Version:

https://daneshyari.com/article/10795389

Daneshyari.com