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We consider the coupling between amembrane and the extracellularmatrix. Computer simulations demonstrate
that the latter coupling is able to sort lipids. It is assumed that membranes are elastic manifolds, and that this
manifold is disrupted by the extracellular matrix. For a solid-supported membrane with an actin network on
top, regions of positive curvature are induced below the actin fibers. A similar mechanism is conceivable by as-
suming that the proteins which connect the cytoskeleton to the membrane induce local membrane curvature.
The regions of non-zero curvature exist irrespective of any phase transition the lipids themselves may undergo.
For lipids that prefer certain curvature, the extracellular matrix thus provides a spatial template for the resulting
lateral domain structure of the membrane.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY NC ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Ever since the lipid raft hypothesis has been established [1], the
lateral organization of membranes has been intensely studied. Much
has been learned from model membranes, in which the number of
lipid species is strongly reduced compared to their biological counter-
parts, enabling detailed and systematic investigations [2,3]. The hope
is that a good understanding of themodel systemwill also provide valu-
able insight into biological membranes.

Investigations of model membranes have established one fact be-
yond any doubt, namely the occurrence of phase transitions in these
systems. For example, ternary membrane mixtures containing saturat-
ed lipids, unsaturated lipids, and cholesterol, demix into two fluid
phases upon lowering the temperature [4]. Furthermore, in single com-
ponent membranes, there exists the main transition, between a phase
where the lipid tails are ordered, and onewhere the tails are disordered
[5,6]. Consequently, it is tempting to assume that phase transitions play
a key role in biological membranes as well [7,8]. Of course, a minimal
condition for this hypothesis is that all biological membranes operate
at conditions that are close to phase transitions. Given the enormous
diversity in membrane compositions between cells, different “body”
temperatures between species, coupling of themembrane to active pro-
cesses in the cell cortex [9], an intriguingmechanismmust have evolved
to keep the membrane “tuned” to the vicinity of a phase transition.
While such a mechanism may well exist, its details remain elusive to
this day.

The purpose of this paper is to highlight that phase transitions are
not the only means to bring about lateral organization in biological

membranes. In our view, a key difference between biological and
model membranes is the presence of an extracellular matrix in the for-
mer: A biological membrane is not free, but instead intricately connect-
ed to its environment, for example to the cytoskeleton network. As we
will show for a very simple model, the mere connection to the environ-
ment is already sufficient to induce lateral organization.Ourmodel is in-
spired by a recent experiment of a (model) membrane “sandwiched”
between a substrate and an actin network [10]. This experiment re-
vealed a lateral domain structure in the membrane that was strongly
correlated to the actin fibers. We will show here how the interplay be-
tween the substrate, the actin network, and themembrane elastic prop-
erties already provides a “template” for this structure, i.e. completely
independent of any phase transition the lipids may exhibit. Next, we
consider how such a mechanism could manifest itself in situations
where a substrate is absent, but where the proteins that connect the
cytoskeleton to the membrane induce local membrane curvature.
Our proposed mechanisms are in line with recent studies that also
indicate the importance of the cytoskeleton in bringing about lateral
organization, such as the formation of protein–lipid complexes [11],
and GPI-anchored protein clusters [12]. In addition, the coupling to the
cytoskeleton induces spatial confinement, which affects the spectrum
of membrane height fluctuations [13–15], as well as protein diffusion
[16,17].

2. Model and method

Our membrane model is defined on a two-dimensional (2D) L × L
periodic square lattice. To describe the out-of-plane height deforma-
tions, each lattice site i is given a real number hi to denote the local
membrane height (Monge representation). We consider a membrane
that strongly interacts with its environment. This interaction, for
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instance with the solid substrate or the cytoskeleton network, will
typically constrain the membrane height fluctuations. In general, the
free energy of the system is given by

H ¼ κa2

2

X
i

∇2hi
� �2 þHenv; ð1Þ

where a is the lattice spacing, and the sum is over all lattice sites. The
first term in Eq. (1) is the elastic energy of themembrane, given in low-
est order of the Helfrich expansion with κ being the bending modulus
[18]. On the lattice, the Laplacian is expressed using the standard
finite-difference expression [19]. The second term Henv describes the
membrane–environment interaction, and needs to be defined explicitly
for the case of interest.

We perform Monte Carlo (MC) to simulate Eq. (1). The MC move is
to update the height of a randomly selected lattice site. To this end,
we propose a new height for the chosen site and accept it with the Me-
tropolis probability, Pacc = min[1, e−βΔH], where β = 1/kBT with kB as
the Boltzmann constant, T as the temperature, and ΔH as the free ener-
gy difference computed according to Eq. (1). For a free energyH that is
quadratic in the height, ∼ ∑i(Aihi

2 + Bihi), one can optimally propose
the new height to the chosen site i from a Gaussian distribution with
mean − Bi/2Ai and variance kBT/2Ai [20], which is how the present
simulations are performed.

3. Results

3.1. Membrane “sandwiched” between a solid substrate and an actin
network

We first consider a solid-supported membrane bound to an actin
network, which resembles the situation addressed experimentally in
Ref. [10]. In this case, the interaction potential in Eq. (1) is given by

Henv ¼ Hsub þHact; ð2Þ

where thefirst termdescribes the interaction of themembranewith the
solid support, and the second term describes the influence of the actin
network.

Solid-supported membranes are separated from the substrate by an
ultra-thin hydration layer typically 1 nm thick. Consequently, themem-
brane–substrate interaction is a strong one [21–24]. It can be expressed
as a superposition of repulsive hydration (steric) and attractive van der
Waals forces [25]. This typically results in a membrane–substrate inter-
action featuring a minimum some distance above the support. We
expand up to quadratic order around the minimum, leading to

Hsub ¼ αa2

2

X
i

h2i ; ð3Þ

whereα is the strength of the harmonic potential [26,27]. For simplicity,
theminimumof the harmonic potential is set to h=0,whichwe take as
the reference from which the membrane height variables hi are mea-
sured. We emphasize that by using a harmonic potential, the free ener-
gy Eq. (1) remains quadratic in hi and so we can use the Gaussian
distribution method of Ref. [20] to optimally propose new height vari-
ables during the MC simulations.

Next, we describe the effect of the actin termHact. In the experiment
of Ref. [10], an actin network is deposited on top of the supportedmem-
brane, i.e. the membrane is “sandwiched” between the substrate and
the actin network. In experiments [10,28], actin is bound to the mem-
brane via cross-linkermolecules, such as streptavidin, referred to as pin-
ning sites in what follows. The pinning sites are immobilized obstacles
randomly distributed along the actin fibers. In line with previous simu-
lations [10,28,29], we represent the actin network by a Voronoi diagram
obtained from a set of random points. The thickness of the actin fibers is

one lattice site, the typical compartment size is chosen to be ∼ 100 nm.
The resulting Voronoi diagram is then superimposed on the lattice of
height variables. Next, we place the pinning sites, at randomly selected
points along the edges of the Voronoi diagram. Once put in place, the
pinning sites remain fixed, i.e. they cannot diffuse along the actin fibers.
We assume that the effect of a pinning site is to locally push the mem-
brane down, i.e. away from the reference height h=0 toward negative
values. We incorporate this effect into our simulations by fixing the
height variable at each pinning site to a negative value hP b 0 (for sim-
plicity, the same value hP is used for all the pinning sites). During the
simulations, MC moves are thus not applied to pinning sites. Since
Eq. (3) is a quadratic expansion, our analysis is restricted to small values
of hP. An extreme upper bound is the thickness of the hydration layer
~10 Å, which is the maximum distance the membrane can be pushed
down, and where Eq. (3) certainly breaks down. For this reason, in the
analysis to be presented, we restrict hP to several Å at most.

We simulate a system of size L=400with lattice spacing a=2 nm.
For the presented results,we use a typical value βκ=70 for the bending
rigidity [27,30]. At room temperature, T = 300 K, this corresponds to
κ = 2.9 × 10−19 Nm, which is close to the value used in Ref. [10].
Fig. 1 shows a snapshot of the membrane, color-coded according to
the thermally averaged height (left) and curvature (right). In both
cases 25% of the actin network is covered by pinning sites. Results are
presented for two values of the strength of the harmonic potential,
βαa4 = 2 (a) and βαa4 = 4 (b). The reported values of α in literature
cover quite a wide range [20,26,27]. Our results use values comparable
to kBT [20]. The deviation from the reference height at the pinning
sites is set as hP = −6 Å. The simulations ran for 4 × 106 sweeps, after
having been equilibrated for 4 × 105 sweeps (each sweep is L2

attempted MC moves).
As can be seen from height and curvature profiles, the actin pattern

is clearly “pressed” onto the membrane. In particular, in the curvature
snapshots, one can see that along the actin fibers an on-average positive
curvature has been induced. This effect persists even at low fractions of
pinning sites. To quantify this, we measured the cross correlation
between the curvature snapshot c and the actin network a using the
Pearson correlation coefficient (PCC). The advantage of using this
quantity is that it can also bemeasured in experiments via fluorescence
spectroscopy [10]. The PCC is defined as

PCC ¼
X

i
ci−cð Þ ai−að ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
ci−cð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
ai−að Þ2

q ; ð4Þ

wherecand ā are themean “pixel” values of the curvature and actin im-
ages, and the sum over all lattice sites (for the actin image, ai is zero ev-
erywhere except at sites that intersect with an edge of the Voronoi
network, for which ai = 1). A positive (negative) value of PCC means
that the curvature is positive (negative) on average underneath the
actin fibers, while a value of zero means that there is no correlation.

Fig. 2(a) shows how PCC varieswith the pinning fraction, using hP=
−6 Å. The PCC initially increases linearly from zero with the pinning
fraction. In the linear regime, the pinning sites are isolated from each
other. Each pinning site thus contributes to the PCC by the same
amount, which explains the linear increase. At larger pinning fractions,
the pinning sites are no longer isolated, i.e. their “regions of influence”
begin to overlap, which explains the downward curvature in the data.
The effect of the pinning height hP is shown in Fig. 2(b) for a pinning
fraction of 40%: By pushing themembrane further down, PCC increases.

For a solid-supported membrane with an actin network “on-top”,
these results suggest a mechanism for lateral domain formation in
membranes that does not require any phase separation between lipids.
The pinning sites along the actin fibers locally push the membrane
down, leading to non-zero average curvature below the fibers. Consider
now a lipid mixture, with one of the lipid species preferring regions of,
say, positive curvature (the coupling between membrane composition
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