38
37
39

BBAMEM-81126; No. of pages: 11; 4C:

Biochimica et Biophysica Acta xxx (2012) XXX-XXX

journal homepage: www.elsevier.com/locate/bbamem

Contents lists available at SciVerse ScienceDirect

Biochimica et Biophysica Acta

Stomatin interacts with GLUT1/SLC2A1, band 3/SLC4A1, and aquaporin-1 in human
erythrocyte membrane domains

Stefanie Rungaldier 2, Walter Oberwagner ?, Ulrich Salzer ?, Edina Csaszar P, Rainer Prohaska ®*

@ Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Viena, Austria

Y Mass Spectrometry Facility, MFPL, Vienna, Austria

ARTICLE INFO

ABSTRACT

Article history:

Received 21 June 2012

Received in revised form 20 October 2012
Accepted 26 November 2012

Available online xxxx

Keywords:

Integral membrane proteins
Lipid rafts

Chemical cross-linking
Protein-protein interaction

The widely expressed, homo-oligomeric, lipid raft-associated, monotopic integral membrane protein
stomatin and its homologues are known to interact with and modulate various ion channels and transporters.
Stomatin is a major protein of the human erythrocyte membrane, where it associates with and modifies the
glucose transporter GLUT1; however, previous attempts to purify hetero-oligomeric stomatin complexes for
biochemical analysis have failed. Because lateral interactions of membrane proteins may be short-lived and
unstable, we have used in situ chemical cross-linking of erythrocyte membranes to fix the stomatin com-
plexes for subsequent purification by immunoaffinity chromatography. To further enrich stomatin, we
prepared detergent-resistant membranes either before or after cross-linking. Mass spectrometry of the iso-
lated, high molecular, cross-linked stomatin complexes revealed the major interaction partners as glucose
transporter-1 (GLUT1), anion exchanger (band 3), and water channel (aquaporin-1). Moreover, ferroportin-1
(SLC40A1), urea transporter-1 (SLC14A1), nucleoside transporter (SLC29A1), the calcium-pump (Ca-ATPase-4),
(D47, and flotillins were identified as stomatin-interacting proteins. These findings are in line with the hypoth-

esis that stomatin plays a role as membrane-bound scaffolding protein modulating transport proteins.

© 2012 Published by Elsevier B.V.

1. Introduction

Stomatin, also known as band 7 integral membrane protein or
protein 7.2b, is a major erythrocyte membrane protein [1-3] that is
missing in red cells of overhydrated hereditary stomatocytosis pa-
tients [3]. It is expressed ubiquitously and conserved from archaea
to mammals. In humans, there are 5 similar proteins [4-6], while
the C. elegans genome contains 10 stomatin-like genes, including
mec-2, unc-1, and unc-24 as best studied [7,8]. The common domain
of stomatin-like and related proteins is known as SPFH (stomatin, flotillin,
prohibitin, HfIC/K)-domain [9,10] or PHB (prohibitin homology)-domain
[11]. These SPFH/PHB-proteins may play a role as membrane-bound scaf-
folding proteins that are associated with other membrane proteins and
cortical cytoskeleton [11,12].

Hallmarks of stomatin are the monotopic structure [13], oligomer-
ic nature [14,15], S-palmitoylation [16], and lipid raft-association
[15,17,18]. Moreover, stomatin and stomatin-like proteins are
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cholesterol-binding proteins [4,19]. Most of these features are 5:

also characteristic for other SPFH/PHB-domain proteins and for
the topologically similar but unrelated caveolins [20]. The crystal
structure of an archaeal stomatin core domain revealed a unique, tri-
meric structure with extending a-helices from each triangular corner
that interact with equal a-helices of adjacent trimers to form antiparal-
lel coiled-coils thus explaining the homo-oligomeric nature [21]. In con-
trast, crystal structures of the mouse stomatin-domain were found to be
composed of banana-shaped dimers similar to BAR-domains forming
hexagonal structures that are capable of building oligomers [22].
While stomatin and stomatin-like proteins are known to interact with
various ion channels modulating their activities [19,22-25], only
human stomatin has been shown to associate with the glucose trans-
porter GLUT1 [26-30]. The interaction of stomatin and GLUT1 is also im-

plicated by the loss of function of this complex in erythrocytes of ¢

patients with stomatin-deficient cryohydrocytosis [31]. Apparently,
stomatin modulates GLUT1 to repress glucose uptake while enhancing
dehydroascorbate influx [30]. The molecular mechanism of this modula-
tion has not been investigated yet. Because erythrocyte GLUT1 is only
found in mammals that are unable to synthesize vitamin C, it is implicat-
ed that the high GLUT1 expression in human erythrocytes may be due to
a compensatory mechanism for better utilising ascorbate [30]. This
stomatin-dependent mechanism was debated [32,33] and therefore
we set out to study the direct physical interaction of these proteins by
in situ chemical cross-linking. We show here that stomatin forms
major complexes with GLUTT1, as anticipated, but also with band 3 and
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aquaporin-1. Moreover, we found stomatin to associate with several
transporters suggesting a general role as a modulator of transport
proteins.

2. Materials and methods
2.1. Reagents

Human blood from healthy donors in EDTA-vials was obtained from
the Austrian Red Cross, Vienna. For each experiment, washed red blood
cells of 4 donors were pooled. Antibodies were used against stomatin
(GARP-50, GARP-61, GARP-65) [1], GLUT1 (Millipore), glycophorin A
(Santa Cruz), flotillin 2 (BD Biosciences), and band 3 (Sigma). The
cross-linkers ethylene glycolbis(succinimidylsuccinate) (EGS; bridging
16.1 A distance) and disuccinimidyl suberate (DSS; bridging 11.4 A dis-
tance) were purchased from Pierce/Thermo Scientific; CNBr-activated
Sepharose was from Pharmacia/GE Healthcare. Other chemicals of
highest purity were from Merck/VWR or Sigma.

2.2. Preparation of erythrocyte membranes

Erythrocytes were purified from 10 ml blood by washing with PBS
(3 times 1000 xg), filtration through a column of microcrystalline and
a-cellulose [34] and pelleting. Membranes were prepared by hypotonic
lysis in 20 volumes of 5 mM EDTA, pH 8.0, 1 mM PMSF (lysis buffer), on
ice for 10 min, and centrifugation at 20,000 xg (Sorvall RC5C Plus) for
10 min. The pellet was washed 3 times with lysis buffer. To reduce sam-
ple complexity in several experiments, the cytoskeleton was stripped off
the membranes by incubating with 10 volumes 0.1 M NaOH on ice for
10 min and washing with lysis buffer.

2.3. Preparation of DRMs

Native membranes were suspended in an equal volume 1% Triton
X-100, 5 mM EDTA, 1 mM PMSF in PBS and incubated on ice for
10 min. This mixture was subjected to flotation by mixing with 80%
sucrose in PBS (alternatively, in 0.15 M Na,COs instead of PBS) to
yield 50% sucrose, and placed at the bottom of a centrifuge tube. Solu-
tions of 40%, 35% and 5% sucrose in PBS were overlaid sequentially.
The samples were centrifuged at 230,000 xg (Beckman Coulter Opti-
ma™ L-80 XP ultracentrifuge, SW55Ti rotor) for 16 h. Nine fractions
of 0.5 ml were collected from the top and aliquots were analysed by
SDS-PAGE/silver staining and Western blotting.

2.4. Chemical cross-linking of membranes

Native or stripped erythrocyte membranes were incubated with
0.8 mM EGS or DSS in PBS, pH 8.0, as recommended by the manufac-
turer. The reactions were performed on ice for 30 min and stopped by
adding 15 mM Tris-HCI, pH 8.0. Respective membrane pellets were
solubilised in 1 ml TNET (20 mM Tris-HCI, pH 8.0, 130 mM Nadcl,
5 mM EDTA, 1% Triton X-100, 1 mM PMSF) at 25 °C for 15 min,
cleared by centrifugation (14 000 rpm, Eppendorf, 10 min), and the
supernatant was used for immunoisolation of stomatin-complexes.
Alternatively, membranes were dissolved in 1% SDS for 5 min at
37 °C, and the solution was diluted with 10 volumes cold (4 °C)
TNET before immunoisolation.

2.5. Chemical cross-linking of DRMs

Isolated DRMs were cross-linked with either 16 M or 8 uM EGS,
quenched with 15 mM Tris-HCl, pH 8.0, dissolved in 1% SDS at
37 °C, and the solution was diluted with 10 volumes cold (4 °C)
TNET before immunoisolation.

2.6. Immunoisolation of stomatin-complexes

TNET- or SDS/TNET-solubilised, chemically cross-linked membrane
proteins were diluted with an equal volume cold (4 °C) TNE (20 mM
Tris-HCI, pH 8.0, 130 mM NaCl, 5 mM EDTA, 1 mM PMSF) and loaded
onto a small column (1x1 cm) of monoclonal anti-stomatin antibody
GARP-50 covalently bound to CNBr-activated Sepharose (1 mg/ml), as
described [1]. The column was washed with 15-20 ml 0.1% Triton
X-100 in TNE, in some experiments with an intermediate wash with
5 ml 0.3 M NadCl in 0.1% Triton X-100 in TNE, and stomatin complexes
were eluted with 5-times 1 ml 0.1 M glycine-HCl, pH 2.5, 0.1% Triton
X-100. Each fraction was collected into 55 mM Tris—HCI, pH 8.8, then ad-
justed to 0.1% SDS, freeze-dried (Speed-Vac), and re-dissolved in 100 pl
water.

In summary, twelve independent immunoisolation experiments
were performed.

2.7. SDS-PAGE and Western blotting

The immunoaffinity elution fractions were mixed with Laemmli sam-
ple buffer, heated for 3 min at 95 °C, and loaded onto 7% or 10% Laemmli
SDS-PAGE gels (Hoefer Sturdier SE 400, 14 x 12 cm) along with HiMark
™ pre-stained high molecular weight standard (Invitrogen). Running
conditions for large complexes were up to 24 h at 150 V, 4 °C. In addi-
tion, 4-12% gradient gels (GE Healthcare) were used and run for 1 h at
160 V. Gels were silver-stained by a mass spectrometry-compatible
method [35] or blotted onto nitrocellulose (16 h at 100 mA, 4 °C) by
standard methods. To estimate the relative molecular mass of protein
complexes, the Ferguson plot was used. For Western blotting, usually
mini-gels (10 x 8 cm) have been used.

2.8. Mass spectrometry

Silver-stained bands were cut out, proteins digested with trypsin,
and the peptides analysed by nano-electrospray LC-MS/MS. Spectra
were processed by Mascot 2.2.04 (Matrix Science, London) and the
identified peptides were semi-quantitatively estimated by Average
Total Ion Current (AvTIC) using the Scaffold3 software (Proteome
Software, Portland). Details are given in the Supplementary data. In
summary, about 60 MS-analyses were performed.

3. Results

3.1. Isolation and identification of stomatin-complexes after chemical
cross-linking of erythrocyte membranes

To generate chemically cross-linked stomatin complexes in situ,
we incubated normal or cytoskeleton-depleted erythrocyte mem-
branes with 0.8 mM EGS. After membrane solubilisation we isolated
the stomatin-complexes by immunoaffinity chromatography and
analysed them by SDS-PAGE (Fig. 1A). Due to the massive cross-
linking of native membranes, we rather focussed on the cytoskeleton-
depleted membranes, because we wanted to target integral membrane
proteins, and excised the bands with 130 kDa, 300 kDa, and larger
than 500 kDa (Fig. 1A). MS-analysis of these bands clearly revealed
the presence of 3 major proteins: stomatin, glucose transporter-1
(GLUT1/SLC2A1), and the anion exchanger (band 3/AE1/SLC4A1)
(Fig. 1B). The major component in the>500 kDa band was stomatin,
while GLUT1 was highest in the 130 kDa band. In addition to stomatin,
GLUT1 and band 3, the> 500 kDa band contained flotillin-1 and -2, the
urea transporter-1 (UT1/SLC14A1), iron transporter ferroportin-1
(FPN1/SLC40A1), Kell protein/CD238, and protein 4.2, with the urea
transporter exceeding GLUT1 and equalling band 3 amounts (Supple-
mentary Fig. 1). While it is known that GLUT1 interacts with stomatin,
it is not known for band 3 and the minor proteins. We performed
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