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Background: Free energy simulations are an important tool in the arsenal of computational biophysics, allowing
the calculation of thermodynamic properties of binding or enzymatic reactions. This paper introducesmethods to
increase the accuracy and precision of free energy calculations by calculating the free energy costs of constraints
during post-processing. The primary purpose of employing constraints for these free energy methods is to
increase the phase space overlap between ensembles, which is required for accuracy and convergence.
Methods: The free energy costs of applying or removing constraints are calculated as additional explicit steps in
the free energy cycle. The new techniques focus on hard degrees of freedom and use both gradients and Hessian
estimation. Enthalpy, vibrational entropy, and Jacobian free energy terms are considered.
Results: We demonstrate the utility of this method with simple classical systems involving harmonic and
anharmonic oscillators, four-atomic benchmark systems, an alchemical mutation of ethane to methanol, and
free energy simulations between alanine and serine. The errors for the analytical test cases are all below
0.0007 kcal/mol, and the accuracy of the free energy results of ethane to methanol is improved from 0.15 to
0.04 kcal/mol. For the alanine to serine case, the phase space overlaps of the unconstrained simulations range
between 0.15 and 0.9%. The introduction of constraints increases the overlap up to 2.05%. On average, the overlap
increases by 94% relative to the unconstrained value and precision is doubled.
Conclusions: The approach reduces errors arising from constraints by about an order of magnitude. Free energy
simulations benefit from the use of constraints through enhanced convergence and higher precision.
General significance: The primary utility of this approach is to calculate free energies for systems with disparate
energy surfaces and bonded terms, especially in multi-scale molecular mechanics/quantum mechanics
simulations. This article is part of a Special Issue entitled Recent developments of molecular dynamics.

© 2014 Published by Elsevier B.V.

1. Introduction

Constraints are used in most molecular dynamics simulations, since
the maximum length of the time step for integrating the Newtonian
equations ofmotion is restricted by the frequency of the fastestmotions
in the system. Imposing constraints that remove the associated rapid
vibrational modes makes those degrees of freedom rigid. Thus, it is
possible to use longer time steps without losing the conservation of en-
ergy or significantly distorting the desired ensemble. Thus, bond con-
straints can reduce the required computer time by a factor of three [1].
Furthermore, constraints can be a very valuable tool to improve the
convergence and efficiency of free energy simulations, e.g., when using
the Simplified Confinement [2] or Confine-and-Release methods [3].

Several algorithms are available to impose constraints in molecular
dynamics simulations [4]. Among the most widely used methods is

the simple two body constraint SHAKE [5]. SHAKE constrains bonds
and angles by finding forces that maintain the right geometry with the
iterative Gauss–Seidel method. However, constraining too many bond
distances that are coupled to each other through SHAKE is not practical
due to the recursive nature of this method (e.g., ring structures).
Prominent alternative approaches include the pairwise Rattle
algorithm [6], which also includes the velocities of the atoms, or the
LINCS algorithm [7]. Recently, the Shape rigid body integrator [8] has
been developed that combines the accuracy of SHAKE with the possibil-
ity to use higher numbers andmore types of constraints (i.e., rigid bodies
of three or more centers, thus including bonds, angles and dihedrals).

Notably, imposing constraints can affect the outcome of the simula-
tion by restricting the phase space of specified degrees of freedom to a
choice selected by the user. Van Gunsteren reported quenching of dihe-
dral angle transitions if both bonds and angles are constrained [9,10].
Furthermore, the efficiency of constrained simulations is lowered by
angle constraints [1]. Toxvaerd pointed out that angle constraints
change the trans-gauche transition rate of decane drastically [11].
Tobias and Brooks [12] determined that constraints shift the frequencies
of the normal modes in biomolecules, but only in the region between
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100 and 1400 cm−1. Similarly, Hinsen and Kneller found that the dy-
namics of polypeptides are slightly perturbed by constraints [13].
Recently, Echenique et al. [14] carefully analyzed and quantified the dif-
ference betweenunconstrainedmodels and several types of constraints.
Moreover, deviations between 0.2 and 0.5 kcal/mol were found in sol-
vation free energy calculations when bond length constraints were
employed [15]. Deviations of such magnitude highlight the need to
properly account for free energy changes due to constraints in free en-
ergy simulations.

A number of publications have focused on methods for calculating
constraint corrections [16–19]; good overviews are provided by
Boresch and Karplus [20] or Wang and Hermans [21]. The most promi-
nent approach for such corrections is the use of the average constraint
force [22]. However, this approach only seems to be valid for bond
length constraints [20]. The potential of mean force corrections of
Pearlman and Kollman [23,24] compute the contribution to the free en-
ergy for systems with constrained bond terms. However, this requires
additional simulations. Furthermore,most of the currently existing con-
straint corrections have been developed for free energy calculations
with Thermodynamic Integration [25], and, therefore, cannot be used
straightforwardly in the increasingly popular Bennett's acceptance
ratio (BAR) [26], multistate-BAR (MBAR) [27], or Non-Boltzmann
Bennett (NBB) [28,29] methods.

For free energy simulations with BAR, the primary utility of includ-
ing constraints is to increase the phase space overlap between two dis-
tinct energy surfaces. Since the variance of the free energy estimate is
directly linked to the phase space overlap, constraints allow free energy
simulations to be more accurate and to converge more quickly (thus
saving computational time). This is of particular utility for coupling dis-
parate energy surfaces, such as QM/MMwithMM,where small changes
in bond lengths and angles can significantly decrease the necessary
overlap needed for an accurate result. This increased accuracy and faster
convergence rate offsets the costs associated with post-processing con-
straints. Here, we attempt to provide a simple framework to correct for
the effect of constraints in free energy calculations with BAR by
postprocessing the involved trajectories. In particular, we achieve this
by explicitly calculating the free energy costs of adding and removing
constraints as additional steps in the free energy cycle. We achieve this
by employing a gradient calculation combinedwith normal mode analy-
sis [30] to approximate the contributions to the partition function associ-
ated with the constrained degrees of freedom. Notably, this approach is
also compatible with most quantum-packages and QM/MM [31–37].

Our approach is inspired by Gō and Scheraga [38], who showed that
bond lengths and angles can be treated as functions of the dihedral an-
gles. This implies that the optimal position of a bond or angle at each
frame of a trajectory can be determined after the simulation has been
conducted with an suboptimal configuration of that particular bond or
angle. In particular, they regarded proteins to be a collection of indepen-
dent normal modes. Some of the normal modes can be considered hard
if their force constant is high enough, while all other normal modes are
considered soft. The hard normal modes tend to be insensitive to the
changes in conformation, so they can be regarded as functions of the
soft variables (changing the bond length and bond angles after the con-
formation changes). This approximation is of course only valid close to
the equilibrium conformation. Using this procedure, the hard modes
can be considered to be frozen (constrained) during the dynamics,
while the soft modes are treated classically to approximate the partition
function. Thus, to account for the changes of the hard degrees of free-
dom, it is possible to use a post-processing step that changes the bond
lengths and angles according to their (soft) environment, and the free
energy decrease associated with that change.

The remainder of this paper is organized as follows. First, we outline
how to calculate the free energy costs of bond and angle constraints
(referred to as “constraint correction”), startingwith a simple harmonic
oscillator, and progressing to the analysis of trajectories in free energy
simulations with multiple constraints (Section 2). Methodological

details of the benchmark systems and simulations are presented in
Section 3.We then present the results for harmonic and anharmonic os-
cillators, four-atomic benchmark systems, water boxes of varying size,
an alchemical mutation of ethane to methanol, and free energy simula-
tions between alanine and serine (Section 4, see Fig. 1). We conclude
with a short discussion concerning the practical advantages of using
constraints in free energy calculations in Section 5. A description of
the implementation of the constraint correction in CHARMM, as well
as a discussion of alternative ways to approximate the Hessian can be
found in the Supplementary material.

2. Theory

To illustrate the problem of calculating the free energy of releasing a
constraint, we start with a simple classical harmonic oscillator with an
internal coordinate q. For this system, the potential energy U is given by

U Δqð Þ ¼ U0 þ
K
2
Δq2; ð1Þ

where Δq is the deviation from the energy minimum, U0 is the zero
point energy that depends on the reference point and K is the force
constant of the bond or angle. Given this potential energy function,
the partition function Z of the harmonic oscillator (Zh.o.) can be obtained
by integrating over the single degree of freedom, q,

Zh:o: ¼
Z

e−βU Δqð ÞdΔq ¼ e−βU0

Z
e−βK

2Δq
2

dΔq: ð2Þ

The absolute free energy of the harmonic oscillator is then

Gh:o: ¼ −β−1ln Zh:o: ¼ U0−β−1ln
Z

e−βK
2Δq

2

dΔq ð3Þ

¼ U0−β−1ln

ffiffiffiffiffiffiffi
2π
βK

s
; ð4Þ

where we have made use of the Gaussian integral.
If we introduce a constraint in the harmonic oscillator, we completely

remove the degree of freedom q, so the integral in the partition function
becomes a single point, corresponding to aDirac delta δ(x).Making use of
the integral of the Dirac delta, ∫ δ(x)dx=1, the partition function of the
constrained system becomes

Zh:o:
cons ¼ e−βU Δqconsð Þ

; ð5Þ

and, correspondingly, the free energy is reduced to

Gh:o:
cons ¼ −β−1ln Zh:o:

cons ¼ U Δqconsð Þ: ð6Þ

Accordingly the free energy of imposing a constraint corresponds to

ΔGh:o:
cons ¼ Gh:o:

cons−Gh:o: ¼ U Δqconsð Þ−U0 þ β−1ln

ffiffiffiffiffiffiffi
2π
βK

s
: ð7Þ

For convenience, it is possible to divide the total energy into two
contributions. First, the enthalpic contribution ΔH,

ΔHh:o: ¼ U Δqconsð Þ−U0; ð8Þ

which is independent of the temperature. Notably, U(Δqcons) inherently
contains U0.
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