EL SEVIER Contents lists available at ScienceDirect ## Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbagen # Neutralization of leukotriene C₄ and D₄ activity by monoclonal and single-chain antibodies Yuki Kawakami ^a, Shiori Hirano ^a, Mai Kinoshita ^a, Akemi Otsuki ^a, Toshiko Suzuki-Yamamoto ^a, Makiko Suzuki ^a, Masumi Kimoto ^a, Sae Sasabe ^a, Mitsuo Fukushima ^a, Koji Kishimoto ^b, Takashi Izumi ^b, Toru Oga ^c, Shuh Narumiya ^d, Mitsuaki Sugahara ^e, Masashi Miyano ^{e,f}, Shozo Yamamoto ^g, Yoshitaka Takahashi ^{a,*} - ^a Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719–1197, Japan - ^b Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma 371–8511, Japan - ^c Department of Respiratory Care & Sleep Control Medicine, Kyoto University Graduate School of Medicine, Kyoto 606–8501, Japan - ^d Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606–8501, Japan - ^e Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679–5148, Japan - f Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252–5258, Japan - g Department of Food and Nutrition, Kyoto Women's University, Kyoto 605–8501, Japan #### ARTICLE INFO Article history: Received 5 July 2013 Received in revised form 19 November 2013 Accepted 11 December 2013 Available online 20 December 2013 Keywords: Arachidonic acid CysLT₁ receptor CysLT₂ receptor Cysteinyl leukotriene Monoclonal antibody Single-chain variable fragment #### ABSTRACT Background: Cysteinyl leukotrienes (LTs) are key mediators in inflammation. To explore the structure of the antigen-recognition site of a monoclonal antibody against LTC₄ (mAbLTC), we previously isolated full-length cDNAs for heavy and light chains of the antibody and prepared a single-chain antibody comprising variable regions of these two chains (scFvLTC). *Methods*: We examined whether mAbLTC and scFvLTC neutralized the biological activities of LTC₄ and LTD₄ by competing their binding to their receptors. Results: mAbLTC and scFvLTC inhibited their binding of LTC₄ or LTD₄ to CysLT₁ receptor (CysLT₁R) and CysLT₂ receptor (CysLT₂R) overexpressed in Chinese hamster ovary cells. The induction by LTD₄ of monocyte chemoattractant protein-1 and interleukin-8 mRNAs in human monocytic leukemia THP-1 cells expressing CysLT₁R was dose-dependently suppressed not only by mAbLTC but also by scFvLTC. LTC₄- and LTD₄-induced aggregation of mouse platelets expressing CysLT₂R was dose-dependently suppressed by either mAbLTC or scFvLTC. Administration of mAbLTC reduced pulmonary eosinophil infiltration and goblet cell hyperplasia observed in a murine model of asthma. Furthermore, mAbLTC bound to CysLT₂R antagonists but not to CysLT₁R antagonists. Conclusions: These results indicate that mAbLTC and scFvLTC neutralize the biological activities of LTs by competing their binding to CysLT₁R and CysLT₂R. Furthermore, the binding of cysteinyl LT receptor antagonists to mAbLTC suggests the structural resemblance of the LT-recognition site of the antibody to that of these receptors. General significance: mAbLTC can be used in the treatment of inflammatory diseases such as asthma. © 2013 Elsevier B.V. All rights reserved. #### 1. Introduction Cysteinyl leukotrienes (LTs) including LTC₄, LTD₄ and LTE₄ are key mediators in inflammation [1,2]. Biosynthesis of cysteinyl LTs is initiated by conversion of arachidonic acid to LTA₄ catalyzed by 5-lipoxygenase. Then, the unstable epoxide LTA₄ is conjugated with reduced glutathione Abbreviations: BAL, bronchoalveolar lavage; CHO, Chinese hamster ovary; CysL T_1R , CysL T_1 receptor; CysL T_2R , CysL T_2 receptor; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HE, hematoxylin and eosin; IL-8, interleukin-8; LT, leukotriene; mAbLTC, monoclonal antibody against leukotriene C_4 ; MCP-1, monocyte chemoattractant protein-1; OVA, ovalbumin; PAS, periodic acid-Schiff; scFvLTC, single-chain variable fragment comprising variable regions of heavy and light chains of monoclonal antibody against leukotriene C_4 E-mail address: ytaka@fhw.oka-pu.ac.jp (Y. Takahashi). to produce LTC₄ which is further converted to LTD₄ and LTE₄ by the sequential cleavage for the tripeptide adduct of glutamate and glycine [2]. The biological activities of the cysteinyl LTs are mediated by at least two known G protein-coupled receptors, CysLT₁ receptor (CysLT₁R) and CysLT₂ receptor (CysLT₂R) [3]. The human and mouse CysLT₁Rs bind LTD₄ with higher affinity than LTC₄ [4,5]. The human CysLT₂R binds LTC₄ and LTD₄ equally [6], whereas the mouse CysLT₂R shows higher affinity to LTC₄ than to LTD₄ [5]. CysLT₁R couples to G_{q/11} and/or G_{i/o} depending on cell types, whereas CysLT₂R couples to G_{q/11} and activation of these receptors elicits intracellular calcium mobilization [3]. CysLT₁R is the molecular target of the antiasthmatic drugs pranlukast, zafirlukast and montelukast, which show efficacy in blocking inflammatory actions in the airways and improving airway function [7-9]. The functional characterization of CysLT₂R had been limited, although its roles in bleomycin-induced pulmonary fibrosis [10] as well as atopic dermatitis [11] were recently reported. BAY-u9773 has been known as a ^{*} Corresponding author at: Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719–1197, Japan. Tel./fax: +81 866 94 2155. nonselective antagonist for CysLT₂R, but two selective CysLT₂R antagonists, HAMI3379 and BayCysLT₂ were recently developed [12,13]. Matsumoto et al. previously prepared a monoclonal antibody against LTC₄ (mAbLTC) for immunoaffinity purification and radioimmunoassay of this bioactive eicosanoid in human synovial fluid [14]. To explore the structure of the active site of the antibody recognizing the antigen, we isolated full-length cDNAs for heavy and light chains of the monoclonal antibody and deduced their primary structures [15]. Furthermore, we constructed an expression plasmid encoding a single-chain variable fragment antibody comprising variable regions of heavy and light chains of the original monoclonal antibody and expressed it in COS-7 cells [15]. The expressed fragment termed as scFvLTC showed high affinity and specificity to LTC₄ but lower affinity to LTD₄ and LTE₄, although a slight reduction of affinity to these LTs was observed as compared with mAbLTC [15]. The aim of this study was to examine whether mAbLTC and scFvLTC neutralized the biological activities of LTC₄ and LTD₄ by competing their binding to their receptors. Furthermore, we examined whether mAbLTC bound to antagonists for these receptors and investigated the structural similarity of the LT-recognition site of antibody to that of receptors. #### 2. Materials and methods #### 2.1. Animals Male C57BL/6 J mice were obtained from Charles River Laboratories, Japan (Yokohama, Japan), and were used under protocols that were approved by the Experimental Animal Care and Use Committee of Okayama Prefectural University. All mice were maintained in a temperature-controlled (25 °C) facility with a 12-hour light/12-hour dark cycle and were fed a normal rodent chow diet (CE-2, CLEA Japan, Tokyo, Japan). Food and water were available ad libitum. #### 2.2. Materials LTC₄, LTD₄, pranlukast, MK-571, BAY-u9773, HAMI3379, BayCysLT₂, goat anti-mouse IgG-coated plates and Ellman's reagent containing the substrate to acetylcholinesterase were purchased from Cayman Chemical (Ann Arbor, MI). LTC₄-acetylcholinesterase conjugate was a gift from Dr. K. Maxey of Cayman Chemical. Oligodeoxyribonucleotides were synthesized by Hokkaido System Science (Sapporo, Japan). An expression vector pCXN2 having a powerful CAG promoter [16] was kindly provided by Dr. J. Miyazaki of Osaka University. Hybridoma cells producing mAbLTC [14] were cultured in serum-free GIT medium (Wako, Osaka, Japan). The mAbLTC in the culture medium was purified using protein A-Sepharose CL4B (GE Healthcare, Piscataway, NJ) column chromatography and the buffer was changed to phosphate-buffered saline at pH 7.4 by gel-filtration before use [15]. #### 2.3. Preparation of scFvLTC The scFvLTC was prepared as described previously [15]. Briefly, an expression plasmid encoding an scFvLTC (pCXN2-scFvLTC) [15] was introduced into COS-7 cells by the DEAE-dextran method. The culture medium was collected and subjected to Ni-NTA agarose (Qiagen, Valencia, CA) column chromatography. After washing with 50 mM sodium phosphate buffer at pH 8.0 containing 300 mM NaCl, 0.05% Tween 20 and 20 mM imidazole, the hexahistidine-tagged scFvLTC was eluted with 250 mM imidazole in 50 mM sodium phosphate buffer at pH 8.0 containing 300 mM NaCl and 5 mM NaN3. After desalting and concentration, the eluted fractions were reloaded onto a Ni-NTA agarose. The purified scFvLTC was obtained as described above except that 50 mM imidazole was contained in the washing buffer, and the buffer was changed to phosphate-buffered saline at pH7.4 before use. #### 2.4. Cell culture Chinese hamster ovary (CHO) cells were cultured at 37 °C with 5% CO₂ in Ham's F-12 medium supplemented with 10% fetal bovine serum, 100 U/ml of penicillin and 100 µg/ml of streptomycin. Human monocytic leukemia THP-1 cells obtained from RIKEN Cell Bank (Tsukuba, Japan) were maintained at 37 °C with 5% CO₂ in RPMI 1640 medium supplemented with 10% fetal bovine serum. Mouse macrophage-like J774A.1 cells obtained from Japanese Collection of Research Bioresources Cell Bank (Osaka, Japan) were maintained at 37 °C with 5% CO₂ in DMEM medium supplemented with 10% fetal bovine serum. The cells were subcultured every 3–4 days. #### 2.5. Transfection of human CysLT₁R and CysLT₂R expression vectors cDNAs of human CysLT₁R and CysLT₂R were isolated from human leukocyte cDNA library [5], and ligated to EcoRI site of pCXN2 expression vector. CHO cells were transfected with the plasmid using lipofectamine (Invitrogen, Carlsbad, CA) according to the manufacturer's instructions. After 3 days, the transfected cells were split at a ratio of 1: 100 in culture medium containing 1.5 mg/ml geneticin. After 2 weeks we picked clones, and identified receptor-expressing cells by dot-blot analysis of RNA with alkaline phosphatase-labeled cDNA probes corresponding to the full-length coding sequences of human CysLT₁R and CysLT₂R using AlkPhos Direct Labelling Module (GE Healthcare). The cells permanently expressing human CysLT₁R and CysLT₂R were designated as CHO-CysLT₁ and CHO-CysLT₂, respectively. Mock-transfected cells were established by transfection of the parental pCXN2. #### 2.6. Measurement of intracellular calcium concentrations CHO-CysLT₁, CHO-CysLT₂ and THP-1 cells were suspended in Hepes-Tyrode's-BSA buffer (10 mM Hepes-NaOH at pH 7.4, 140 mM NaCl, 2.7 mM KCl, 0.49 mM MgCl₂, 2 mM CaCl₂, 12 mM NaHCO₃, 5.6 mM D-glucose, 0.37 mM NaH₂PO₄ and 0.1% (w/v) of fatty acid-free BSA) and loaded with 5 µM fura 2-AM at 37 C for 1 h, washed twice and resuspended in Hepes-Tyrode's-BSA buffer to a concentration of 2×10^6 CHO cells/ml and 5×10^6 THP-1 cells/ml. Receptor antagonists or antibodies were added. After stirring at 37 C for 5 min, LTC₄ or LTD₄ was added, and fluorescence was measured using a fluorescence spectrophotometer (F-2000, Hitachi, Tokyo, Japan), with emission wavelength set at 510 nm and excitation wavelength at 340 nm and 380 nm. The intracellular calcium concentration was calculated with the Grynkiewicz formula [intracellular calcium concentration = $K_d \times (F_0/F_s) \times [(R - R_{min}) / (R_s)]$ $(R_{\text{max}} - R)$]. In this formula R is the experimentally derived 340/ 380 nm fluorescence ratio, R_{\min} and R_{\max} are the values of ratio pairs in the presence of nominally zero and saturating calcium, respectively. K_d is the fura-2 dissociation constant (224 nM at 37 C), and F_0 and F_s are proportionality coefficients for free- and calcium-bound fura-2, respectively (measured at 380 nm excitation). R_{max} was measured in the buffer containing 10 µM ionomycin and 20 mM CaCl₂ and R_{min} in the buffer containing 10 μM ionomycin and 10 mM EGTA. #### 2.7. Quantitative RT-PCR analysis THP-1 cells were seeded into 35 mm-dishes at a density of 1×10^5 cells/dish in RPMI 1640 and preincubated at 37 C for 24 h. Receptor antagonists or antibodies were added 5 min before stimulation of the cells. After addition of LTC₄ or LTD₄, the cells were incubated for 1 h. Total RNA was isolated from the cells using an RNeasy mini kit (Qiagen) according to the manufacturer's protocol. First-strand cDNA was synthesized using SuperScript III reverse transcriptase (Invitrogen) and oligo(dT)₂₀ as a primer. The quantitative RT-PCR analyses were performed using a Bio-Rad iQ5 real time PCR detection system (Hercules, CA). Monocyte chemoattractant protein-1 (MCP-1)-specific primers were: upstream, 5′-GCTCAGCCAGATGCAATCAA-3′ and downstream, ### Download English Version: # https://daneshyari.com/en/article/10800063 Download Persian Version: https://daneshyari.com/article/10800063 <u>Daneshyari.com</u>