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The twin-arginine translocation (Tat) system accomplishes the remarkable feat of translocating large – even
dimeric – proteins across tightly sealed energy-transducing membranes. All of the available evidence indicates
that it is unique in terms of both structure and mechanism; however its very nature has hindered efforts to
probe the core translocation events. At the heart of the problem is the fact that two large sub-complexes are
believed to coalesce to form the active translocon, and ‘capturing’ this translocation event has been too difficult.
Nevertheless, studies on the individual components have come a longway in recent years, and structural studies
have reached the point where educated guesses can be made concerning the most interesting aspects of Tat. In
this article we review these studies and the emerging ideas in this field. This article is part of a Special Issue
entitled: Protein Trafficking & Secretion.

© 2014 Published by Elsevier B.V.

1. Introduction

The twin arginine translocase (Tat) is a protein transport pathway
that exists in Archaea, bacteria and plant chloroplasts. In bacteria, it
exports proteins across the plasma membrane and is important for
many processes including energy metabolism, formation of the cell
envelope, biofilm formation, heavy metal resistance, nitrogen-fixing
symbiosis, bacterial pathogenesis and others [1,2]. What makes this
protein transport system unusual compared to other transport systems
(such as the general secretory, or Sec pathway) is its ability to transport
fully folded proteins across membranes. This remarkable feat has no
requirement for ATP as an energy source, and relies solely on the proton
motive force (PMF) [3–5].

The mechanism of translocation remains poorly understood, in part
due to a lack of high resolution structural information on this complex
and its individual components. That said, a number of recent biophysical
and structural studies have provided a more detailed picture of the
action and composition of this translocase, particularly with respect to
the early events prior to the actual translocation event. This review
discusses the key information from each of these studies. Much of this
article will focus on the Escherichia coli (E. coli) Tat system, but relevant
data on the Gram-positive homologs from Bacillus subtilis (B. subtilis)
and the chloroplast Tat system are also mentioned. A more detailed
analysis of Gram-positive Tat systems is given elsewhere in this volume
by Goosens et al. [6].

2. The Tat system's substrates

The extent to which different organisms utilise the Tat pathway
varies significantly. Gram-positive bacteria such as Staphylococcus
aureus or B. subtilis have fewpredicted substrates [7–9], whereas enteric
bacteria typically possess around 20–30 substrates [10]. Whilst the
rationale for using this translocase remains unclear for some Tat
substrates, three key underlying factors have been identified. The first
is a requirement for the enzymatic insertion of complex cofactors in
the cytoplasm prior to transport, thereby bypassing the requirement
for extra mechanisms to firstly, separately export the cofactor and
then subsequently catalyse its insertion in the periplasm [1]. The second
motive is avoidance of metal ions that compete for insertion into the
active site, and lastly, the transport of hetero-oligomeric complexes
that optimally assemble in the cytoplasm [11,12]. The latter is achieved
through proteins forming complexes with other proteins that possess
an N-terminal Tat signal peptide [13].

Navigation to the Tat translocase is dictated by the presence of an N-
terminal signal peptide that possesses an overall tripartite architecture
of: a polar amino terminal (N) domain, hydrophobic core (H) region
and a polar carboxyl (C) domain (Fig. 1). Despite the Sec- and Tat-
type signal peptides having the same basic structure and a similar
terminal Ala-X-Ala motif, studies on Tat signals revealed a highly
conserved SRRxFLK motif [14,15] located at the junction of the N- and
H-domains. The twin-arginine motif gives this translocase its name.
Both arginines are critical in chloroplast Tat signals [16], but less so in
bacteria, where mutation of a single arginine in bacteria only affects
the rate of translocation, whereas mutation of both completely
abolishes transport [17–19]. Within the SRRxFLK motif, three determi-
nants are important: the twin-arginine pair, the hydrophilic−1 residue
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and the hydrophobic +2 residue (+/− relative to the twin-arginine
pair). However, while Tat and Sec signal peptides share a similar overall
architecture, it is not the twin arginine pair alone that prevents
mistargeting to the Sec pathway. Tat signal peptides are less hydropho-
bic than those used in Sec-targeting [20], and the C-region of certain Tat
signal peptides houses basic residues, which are seldom found in the
same region of Sec signal peptides. The latter is believed to hinder
engagement with Sec machinery [21–23].

3. Tat Translocase components and complexes

3.1. The Tat subunits

Three integral membrane proteins form the minimal set of compo-
nents for the assembly of the Tat translocase in E. coli: TatA, TatB and
TatC. These proteins are expressed from the tatABC operon and reside
in the cytoplasmic membrane arranged as a Tat(A)BC substrate binding
complex and a separate TatA complex (Fig. 2). TatA is an 89 amino acid
protein (9.6 kDa) that consists of a short periplasmic N-terminal region,
a transmembrane helix that is linked via a hinge region to a cytosolically
exposed amphipathic helix (APH), and a highly unstructured,
cytoplasmically-exposed C-terminal region [24–26]. This arrangement
is supported by spectroscopy studies, which indicate that the APH lies
along the surface of the membrane [27,28]. Additionally, solid-state
NMR has shown the TMH to cross the cytoplasmic membrane at a 17°
tilt [29]. An N-out topology is the favoured orientation of TatA in the
cytoplasmic membrane and is supported by recent NMR data of the
TatA component of a Gram-positive homolog, TatAd [30,31]. Some
studies have predicted that TatA may also have a dual topology, on the

basis of data that suggest the N-terminal region of TatA can also be
accessed from the cytoplasm [32]. Moreover, there is evidence of
soluble TatA in bacteria and chloroplasts [33–39]; however the
functional relevance of this soluble TatA pool remains controversial.

TatB consists of 171 amino acids with a molecular mass of 18.5 kDa.
Despite sharing a 20% sequence similarity with TatA [40] and a very
similar predicted secondary structure (Fig. 2), TatB and TatA carry out
functionally distinct roles within the Tat translocase [41].

TatC consists of 258 amino acids with a molecular mass of 28.9 kDa.
As predicted by its secondary structure, this protein traverses the
membrane 6 times, possessing an N-in C-in topology [42]. The tatABC
gene products form two distinct membrane complexes at steady state:
a TatBC-containing substrate binding complex and a separate TatA
complex. It is in this former 370 kDa Tat(A)BC complex where most of
TatB and -C are found at a 1:1 stoichiometric ratio [43]. TatA (found at
~ 25 and 50 fold higher concentrations than TatB and TatC, respectively
[44]), is present as highly heterogeneous complexes ranging from
100–500 kDa [43,45,46] and is not required for TatBC complex assembly
[47].

The composition of the Tat system differs significantly in most
Gram-positive bacteria; all except Streptomycetes contain only tatAC
genes [48,49]. In those examples studied to date, the TatA protein is
bifunctional [50]. The best characterised Tat system in this type of
bacteria is found in B. subtilis — a non-pathogenic soil bacterium,
which contains two discrete Tat systems that operate in parallel, yet
possess different substrate specificities [48]. The first of the two is
TatAdCd, whose only substrate identified at present is the phosphodies-
terase, PhoD [49]. The second translocase is TatAyCy, which exports
YwbN, an iron-dependent DyP-peroxidase [49]. There is a third tatA
gene encoding the TatAc protein, which like TatAd, was recently
shown to form small homogeneous complexes and restore export of
TorA in a ΔAEmutant [51].

Reminiscent of the situation in E. coli, the TatAyCy system is com-
posed of two types of membrane protein complexes: TatAyCy and
TatAy that have been reported to form ~200 kDa complexes (as judged
by gel filtration chromatography) [37,52]. Likewise, TatAdCd exists as a
~230 kDa complex, alongside a separate and discrete TatAd complex of
~160 kDa[50,53]. The TatAd and TatAy proteins are bifunctional fulfill-
ing the role of the TatB protein that would otherwise be present in
Gram-negative bacteria [50,54].

In addition to these bacterial TatAC-containing complexes being
smaller than their E. coli counterparts (TatABC is ~370 kDa on BN gels
[43,45,55]), the lack of a tatB gene and TatA heterogeneity appear to
be conserved features of Gram-positive bacteria. This is an important
point because the remarkable heterogeneity of E. coli TatA complexes
has been considered to be a key element of current translocationmodels
(see below)[53].

Finally, E. coli also possesses a TatA paralogue, TatE. This 67 amino
acid protein possesses 57% sequence identity to TatA [25] and is thought
to have arisen from a gene duplication of tatA [56]. Whilst it can fulfil
TatA activity if overexpressed [41], there is no evidence for a specific
role for this protein, and indeed many Gram-negative bacteria lack a
tatE gene [46,57].

Fig. 1. The Tat signal peptide. A polar amino domain (N-region), hydrophobic core (H-region), and polar carboxyl domain (C-region) comprise the tripartite structure of a Tat signal
peptide, which is located at the N-terminus of the substrate protein. On average they are less hydrophobic than Sec-specific signals, as well as being longer (on average 38 to 24 amino
acids, respectively). Tat signal peptides are distinguished by their conserved twin-argininemotif in theN-region. The C-terminal region houses an A-x-Amotif, which is a consensus cleav-
age site for removal of the signal peptide by signal peptidase.

Fig. 2. Component organisation of the E. coli Tat system. In Gram-negative bacteria the Tat
translocase system is usually made up of three integral membrane proteins, encoded by
the tatABC operon. Both TatA and TatB are single-span transmembrane proteins that pos-
sess: a short periplasmic N-terminal region; single-span transmembrane helix; hinge re-
gion; amphipathic helix lying along the cytoplasm-membrane interface and a highly
charged, unstructured C-terminus. In contrast, TatC is a polytopic protein that is predicted
to contain 6 transmembrane spans, with both the N- and C- termini in the cytoplasm. In
E. coli a TatA paralog exists, TatE, which is encoded elsewhere in the genome.
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